In vitro sensitivity of Fusarium sacchari isolated from sugar cane to five fungicides

Fabiola Medina-Osti, Adriana Gutiérrez-Díez, Salvador Ochoa-Ascencio, Sugey Ramona Sinagawa-García

Abstract


The present study had the objective of evaluating the in vitro sensitivity of Fusarium sacchari to five fungicides of different chemical groups. An isolate of F. sacchari obtained from sugarcane plants (Saccharum officinarum) with wilt symptoms and identified morphologically and molecularly by the characteristics of the genus Fusarium and amplification of the ITS and TEF regions, respectively, was used to evaluate the fungicides azoxystrobin, difenoconazole, hymexazole, cyprodinil and thiabendazole, at concentrations of 1, 10, 100 and 1000 ?g mL-1, using the poison plate technique. The effect of the fungicides and EC50 was determined by the percentage inhibition of F. sacchari growth with respect to the growth on the plates without fungicide. The fungicides difenoconazole at 1000 ?g mL-1 and thiabendazole at 100, 1000 and 10 ?g mL-1 were statistically equal and presented the highest mycelial growth inhibition percentages (93.5 and 92.1, 91.4 and 89.8 %, respectively). The lowest EC50 values were presented by difenoconazole (9.2 ?g mL-1), thiabendazole (9.9 ?g mL-1) and cyprodinil (10.6 ?g mL-1). In conclusion, F. sacchari presented higher in vitro sensitivity to the fungicides difenoconazole (1000 ?g mL-1) and thiabendazole (100, 1000 and 10 ?g mL-1).


Keywords


Pokkah boeng; sugarcane; inhibition; EC50

Full Text:

PDF

References


Agrios GN. 2005. Fitopatología. Segunda edición. Limusa. México. 952p.

Alburqueque AD y Guisqui MR. 2018. Eficiencia de fungicidas químicos para el control in vitro de diferentes fitopatógenos en condiciones controladas. Arnaldoa 25:489-498. http://doi.org/10.22497/arnaldoa.252.25209

Anderson NR, Freije AN, Bergstrom GC, Bradley CA, Cowger C, Faske T, Hollier C, Kleczewski N, Padgett GB, Paul P, Price T and Wise KA. 2020. Sensitivity of Fusarium graminearum to metconazole and tebuconazole fungicides before and after widespread use in wheat in the United States. Plant Health Progress 21:85-90. http://dx.doi.org/10.10 94/PHP-11-19-0083-RS

Avonazi A, Tonin RB, Reis EM, Camera J and Ranzi C. 2014. In vitro sensitivity of Fusarium graminearum isolates to fungicides. Summa Phytopathologica 40:231-247. http://dx.doi.org/10.1590/0100-5405/1891

Bao Y, Xu Y, Wang S, Yao Z and Rao GP. 2020. First report of Fusarium sacchari that causes sugarcane wilt disease in China. Plant Disease 104:2289-2289. https://doi.org/10.1094/PDIS-02-20-0229-PDN

Carbone I and Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91:553-556.

Cenis JL. 1992. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research 20: 2380.

CONADESUCA. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. 2021. 8to Informe Estadístico del Sector Agroindustrial de la Caña de Azúcar en México zafras 2011-2012/2020-2021. http://conadesuca.gob.mx/documentosexternos/8vo_Informe_estadistico.pdf (consulta, julio 2022).

Dahal N and Shrestha RK. 2018. Evaluation of efficacy of fungicides against Fusarium oxysporum f. sp. Lentis in vitro at Lamjung, Nepal. Journal of the Institute of Agriculture and Animal Science 25:105-112. http://dx.doi.org/10.3126/jiaas.v35i1.22520

Finney DJ. 1952. Probit Analysis. Second Edition. Cambridge University Press. New York, USA. 318p.

FRAC. Fungicide Resistance Action Committee. 2020. https://www.frac.info/docs/default-source/publications/frac-mode-of-action-poster/frac-moa-poster-2020v2.pdf?sfvrsn=a48499a_2 (consulta, agosto 2021).

Gachango E, Hanson LE, Rojas A, Hao JJ and Kirk WW. 2012. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease 96:1767-1774. https://doi.org/10.1094/PDIS-11-11-0932-RE

Gutierrez CLJ, Wang Y, Lutton E and McSpadden GBB. 2006. Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions on tomatoes grown in Ohio. Plant Disease 90:397-403. http://dx.doi.org/10.1094/PD-90-0397

Jeyakumar JMJ and Zhang M. 2020. Symptoms and their assessment of sugarcane pokkah boeng. International Journal of Environmental and Agriculture Research 6(12):50-54.

Kawchuk LM, Holley JD, Lynch DR and Clear RM. 1994. Resistance to thiabendazole and thiophanate-methyl in Canadian isolates of Fusarium sambucinum and Helminthosporium solani. American Potato Journal 71:185-192.

Kumar S, Chand G, Mandal D, Kumar A and Kumar S. 2015. Deterioration in sugarcane due to wilt disease. Ecology, Environment and Conservation Journal 21:AS145-AS148.

Leslie JF and Summerell, BA. 2006. The Fusarium laboratory manual. First Edition. Blackwell Publishing. Iowa, USA. 388p.

Lin Z, Xu S, Que Y, Wang J, Comstock JC, Wei J, McCord PH, Chen B, Chen R and Zhang M. 2014. Species-specific detection and identification of Fusarium species complex, the causal agent of sugarcane pokkah boeng in China. PLoS One 9:e104195.

Madhavi GB and Bhattiprolu SL. 2011. Evaluation of fungicides, soil amendment practices and bioagents against Fusarium solani-causal agent of wilt disease in chilli. Journal of Horticultural Sciences 6:141-144. https://jhs.iihr.res.in/index.php/jhs/article/view/423

Melgarejo GJ y Abella PF. 2011. Fungicidas: mecanismos de acción de los fungicidas. Revista Ventana al Campo Andino. (15):193-202. http://hdl.handle.net/20.500.12324/19031

O’Donnell K, Kistler H, Cigelnik E and Ploetz R. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044

Paul SK, Mahmud NU, Gupta DR, Alam MN, Chakraborty M and Islam MT. 2022. First report of Fusarium sacchari causing sugarcane wilt in Bangladesch. Plant Disease 106:319-319. https://doi.org/10.1094/PDIS-04-21-0681-PDN

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

SIAP. Servicio de Información Agroalimentaria y Pesquera. 2022. Anuario estadístico de la producción agrícola 2021. https://nube.siap.gob.mx/cierreagricola/ (consulta, julio 2022).

TNAU. Tamil Nadu Agricultural University. 2020. Agritech Portal. Sugarcane. https://agritech.tnau.ac.in/crop_protection/sugarcane_diseases/sugarcane_d4.html (consulta, agosto 2020).

Vishwakarma SK, Kumar P, Nigam A, Singh A and Kumar A. 2013. Pokkah boeng: an emerging disease of sugarcane. Journal of Plant Pathology and Microbiology 4:1-5. http://dx.doi.org/10.4172/2157-7471.1000170

Viswanathan R, Balaji CG, Selvakumar R, Malathi P, Ramesh Sundar SA, Naveen Prasanth C, Chabra ML and Parameswari B. 2017. Epidemiology of Fusarium diseases in sugarcane: a new discovery of same Fusarium sacchari causing two distinct diseases, wilt and pokkah boeng. Sugar Tech 19:638–646. https://link.springer.com/article/10.1007/s12355-017-0552-4

Viswanathan R. 2020. Fusarium diseases affecting sugarcane production in India. Indian Phytopathology 73:415-424. https://doi.org/10.1007/s42360-020-00241-y

White TJ, Bruns TD, Lee SB and Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp: 315-322. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (eds.) PCR protocols. A guide to methods and applications. Academic Press. New York, USA. 482p. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zhang M and Jeyakumar JMJ. 2018. Fusarium species complex causing pokkah boeng in China. Fusarium: plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers 139-154. https://doi.org/10.5772/intechopen.73133.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2206-1

Refbacks

  • There are currently no refbacks.