Sensitivity of Colletotrichum acutatum isolates obtained from strawberry to tiophanate-methyl and azoxystrobin fungicides

David Espinoza Altamirano, Hilda Victoria Silva Rojas, Santos Gerardo Leyva Mir, Nahum Marbán Mendoza, Ángel Rebollar Alviter

Abstract


The objective of this study was to determine the sensitivity of Colletotrichum acutatum to the fungicides thiophanate-methyl and azoxystrobin, based on mycelial growth and conidia germination. Sixty monoconidial isolates from two strawberry-producing regions of Michoacan state were evaluated in culture medium amended with fungicides at 0.001, 0.01, 0.1, 1 and 10, 100 and 2000 μg mL-1. The effective dose that reduced mycelial growth by 50 % (ED50) of thiophanatemethyl varied from 0.28 to 9.72 μg mL-1 in the Maravatío Valley and from 1.39 to 2.99 μg mL-1 in the Zamora Valley. In conidia, the ED50 ranged from 0.9 to 396.4 μg mL-1 in the Maravatío Valley and from 0.43 to 63.32 μg mL-1 in the Zamora Valley. For azoxystrobin the ED50 in mycelium ranged from 0.04 to 0.36 μg mL-1 in Maravatío and from 0.07 to 0.99 μg mL-1 in Zamora. In the conidia the ED50 varied from 0.01 to 0.56 μg mL-1 for Maravatío and 0.006 to 0.15 μg mL-1 in Zamora. The ED50 distributions indicated that C. acutatum isolates were sensitive to azoxystrobin and moderately resistant to methyl thiophanate.


Keywords


Benzimidazole; QoI; fungicide resistance

Full Text:

PDF (Español)

References


Brent KJ and Hollomon DW. 2007. Fungicide resistance in crop pathogens: how can it be managed?. Fungicide Resistance Action Committee. Frac Monograph no. 1. http://www.frac.info/docs/default-source/publications/monographs/monograph-1.pdf

Chung WH, Ishii H, Nishimura K, Fukaya M, Yano K and Kajitani Y. 2006. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Disease 90:506-512. http://dx.doi.org/10.1094/PD-90-0506

Costet-Costet M. 2015. Monitoring resistance in obligate pathogens by bioassays relating to field use: grapevine powdery and downy mildews. Pp: 251-280 in: Ishii H, and Hollomon WWF (eds). Fungicide resistance in plant pathogens. Springer, Japan. 485 pp. http://dx.doi.org/10.1007/978-4-431-55642-8

Damm U, Cannon PF, Wouldenberg JHC and Crous PW. 2012. The Colletotrichum species complex. Studies in Mycology 73:37-113. http://dx.doi.org/10.3114/sim0010

Doyle JJ and Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15. http://ci.nii.ac.jp/naid/10005384640

Flores FJ and Garzon C. 2013. Detection and assessment of chemical hormesis on the radial growth in vitro of Oomycetes and fungal pathogens. Dose-Response 11:361-373. http://dx.doi.org/10.2203/dose-response.12-026.Garzon

Forcelini BB, Seijo TE, Amiri A and Peres NA. 2016. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone- outside inhibitor fungicides. Plant Disease 100:2050-2056. http://dx.doi.org/10.1094/PDIS-01-16-0118-RE

Freeman S. 2008. Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. Hort Science 43:66-68. http://hortsci.ashspublications.org/content/43/1.toc

Hammerschlag F, Garcés S and Koch-Dean M. 2006. In vitro response of strawberry cultivars and regenerants to Colletotrichum acutatum. Plant Cell, Tissue and Organ Culture 84:255. http://dx.doi.org/10.1007/s11240-005-9027-5

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98. http://brownlab.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf.

Hollomon DW. 2015. Fungicide resistance: facing the challenge. Plant Protection Science 51:170-176. http://dx.doi.org/10.17221/42/2015-PPS

Ishii H. 2012. Resistance in Venturia nashicola to benzimidazoles fungicides and sterol demetylation Inhibitors. Pp: 21-31. In: Thind, T. (ed). Fungicide resistance in crop protection. CAB International. UK. 297 pp. http://dx.doi.org/10.1079/9781845939052.0157

Kim Y, Min J, Kang B, Bach N, Choi W, Park E and Kim H. 2007. Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. The Plant Pathology Journal 23:187-192.

http://dx.doi.org/10.5423/PPJ.2007.23.3.187.

Ma Z and Michailides TJ. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24:853-863. http://dx.doi.org/10.1016/j.cropro.2005.01.011.

Mondal SN, Bhatia A, Shilts T and Timmer LW. 2005. Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin and fenbuconazole. Plant Disease 89:1186-1194. http://dx.doi.org/10.1094/PD-89-1186

Parikka P and Lemetty A. 2009. Colletotrichum acutatum: survival in plant debries and infection of some weeds and cultivated plants. Acta Horticulturae 842:307-310. http://dx.doi.org/10.17660/ActaHortic.2009.842.55

Peres NAR, Souza NL, Peever TL and Timmer LW. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease 88:125-130. http://dx.doi.org/10.1094/PDIS.2004.88.2.125

Rebollar-Alviter A, Madden LV, Jeffers SN and Ellis MA. 2007. Baseline and differential sensitivity to two QoI fungicides among isolates of Phytophthora cactorum that cause leather rot and crown rot on strawberry. Plant Disease 91:1625-1637. http://dx.doi.org/10.1094/PDIS-91-12-1625

Schabenberger O and Pierce FJ. 2001. Contemporary Statistical Model for the Plant and Soil Science. CRC Press, Boca Raton, FL. USA. 738 p.

SIAP. 2016. Sistema de Información Agroalimentaria y Pesquera. Producción agrícola por Cultivo. http://www.siap.gob.mx (consulta en Marzo del 2016).

Smith BJ. 2008. Epidemiology and pathology of strawberry anthracnose: A North American perspective. Hort Science 43:69-73. http://hortsci.ashspublications.org/content/43/1.toc

Turechek WW, Peres NAR and Werner NA. 2006. Pre- and post-infection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Disease 90:862-868. http://dx.doi.org/10.1094/PD-90-0862

Valero M, García-Martínez S, Giner MJ, Aranzazu A and Ruiz JJ. 2010. Benomyl sensitivity assays and species-specific PCR reactions highlight association of two Colletotrichum gloeosporioides types and C. acutatum with rumple disease on Primofiori lemons. European Journal of Plant Pathology 127:399-405. http://dx.doi.org/10.1007/s10658-010-9606-0

van den Bosh F, Oliver R, van den Berg F and Paveley N. 2014. Governing principles can guide fungicide-resistance management tactics. Annual Review of Phytopathology 52:175-195. https://dx.doi.org/10.1146/annurev-phyto-102313-050158

Wedge D, Smith JN, Quebedeaux JP and Constantin RJ. 2007. Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection 26:1449-1558. http://dx.doi.org/10.1016/j.cropro.2006.12.007

Wharton SP and Diéguez-Uribeondo J. 2004. The biology of Colletotrichum acutatum. Anales del jardín botánico de Madrid 61:3:22. http://dx.doi.org/10.3989/ajbm.2004.v61.i1.61

White TJ, Bruns T, Lee S, and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. A guide to methods and applications. Pp. 315–322. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols, Academic Press, Inc. San Diego, CA, USA. https://nature.berkeley.edu/brunslab/papers/white1990.pdf

Zhang Z, Schwartz S, Wagner L and Miller W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7:203-214. http://dx.doi.org/10.1089/10665270050081478




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1612-4

Refbacks

  • There are currently no refbacks.