Mechanisms, applications, and perspectives of antiviral RNA silencing in plants

Hernan Garcia-Ruiz, Mayra Teresa García-Ruiz, Sergio Manuel Gabriel-Peralta, Cristina Betzabeth Miravel-Gabriel, Kautar El-Mounadi

Abstract


Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering.


Keywords


Plant viruses; gene silencing; antiviral defense; transgenic plants; genetic engineering of virus resistance

Full Text:

PDF (Español)

References


Abel PP, Nelson RS., De B, Hoffmann, N, Rogers SG, Fraley, RT and Beachy RN. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738-743. PMID: 3457472

Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T and Pooggin MM. 2006. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34, 462-471. DOI: 10.1093/nar/gkj447

Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M and Mahfouz MM. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16, 238. DOI: 10.1186/s13059-015-0799-6

Axtell, MJ. 2013. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137-159. DOI: 10.1146/annurev-arplant-050312-120043

Azevedo J, Garcia D, Pontier D, Ohnesorge, S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T and Voinnet O. 2010. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24, 904-915. DOI: 10.1101/gad.1908710

Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins F Jr, Hohn T and Pooggin MM. 2011. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39, 5003-5014. DOI: 10.1093/nar/gkr119

Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T and Pooggin MM. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34, 6233-6246. DOI: 10.1093/nar/gkl886

Bonfim K, Faria JC, Nogueira EO, Mendes EA and Aragao FJ. 2007. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20, 717-726. DOI: 10.1094/MPMI-20-6-0717

Brosseau C and Moffett P. 2015. Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. Plant Cell 27, 1742-1754. DOI: 10.1105/tpc.15.00264

Buchmann RC, Asad S, Wolf JN, Mohannath G and Bisaro DM. 2009. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83, 5005-5013. DOI: 10.1128/JVI.01771-08

Cao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, Gal-On A, Zhou C, Li Y and Ding SW. 2014. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 111, 14613-14618. DOI: 10.1073/pnas.1407131111

Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT and Carrington JC. 2012. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. The Plant cell 24, 3613-3629. DOI: 10.1105/tpc.112.099945

Ceniceros-Ojeda EA, Rodriguez-Negrete EA and Rivera-Bustamante RF. 2016. Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery). J Virol 90, 3828-3838. DOI: 10.1128/JVI.02385-15

Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV and Carrington JC. 2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18, 1179-1186. DOI: 10.1101/gad.1201204

Chavez-Calvillo G, Contreras-Paredes CA, Mora-Macias J, Noa-Carrazana JC, Serrano-Rubio AA, Dinkova TD, Carrillo-Tripp M and Silva-Rosales L. 2016. Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489, 179-191. DOI: 10.1016/j.virol.2015.11.026

Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington, JC and Timmermans MC. 2009. Pattern formation via small RNA mobility. Genes Dev 23, 549-554. DOI: 10.1101/gad.1770009

Cruz LF, Rupp JLS, Trick HN and Fellers JP. 2014. Stable resistance to Wheat streak mosaic virus in wheat mediated by RNAi. In Vitro Cellular & Developmental Biology-Plant 50, 665-672. DOI: 10.1007/s11627-014-9634-0

Cuperus JT, Fahlgren N and Carrington JC. 2011. Evolution and functional diversification of MIRNA genes. The Plant cell 23, 431-442. DOI: 10.1105/tpc.110.082784

Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA and Carrington JC. 2010. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature structural & molecular biology 17, 997-1003. DOI: 10.1038/nsmb.1866

Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC and Voinnet O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68-71. DOI: 10.1126/science.1128214

Di Nicola-Negri E, Tavazza M, Salandri L and Ilardi V. 2010. Silencing of Plum pox virus 5’UTR/P1 sequence confers resistance to a wide range of PPV strains. Plant cell reports 29, 1435-1444. DOI: 10.1007/s00299-010-0933-6

Ding SW and Voinnet O. 2007. Antiviral immunity directed by small RNAs. Cell 130, 413-426. DOI: 10.1016/j.cell.2007.07.039

Fitch MM, Manshardt RM, Gonsalves D and Slightom JL. 1993. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant cell reports 12, 245-249. DOI: 10.1007/BF00237128

Fuchs M and Gonsalves D. 1995. Resistance of Transgenic Hybrid Squash Zw-20 Expressing the Coat Protein Genes of Zucchini Yellow Mosaic-Virus and Watermelon Mosaic-Virus-2 to Mixed Infections by Both Potyviruses. Bio-Technology 13, 1466-1473. DOI: 10.1038/nbt1295-1466

Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ and Carrington JC. 2010. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22, 481-496. DOI: 10.1105/tpc.109.073056

Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Garcia Ruiz, MT, McGinn MG, Lowery N, Martinez Baladejo MT and Carrington JC. 2015. Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLoS Pathog 11, e1004755. DOI: 10.1371/journal.ppat.1004755

Hong W, Qian D, Sun R, Jiang L, Wang Y, Wei C, Zhang Z and Li Y. 2015. OsRDR6 plays role in host defense against double-stranded RNA virus, Rice Dwarf Phytoreovirus. Sci Rep 5, 11324. DOI: 10.1038/srep11324

Horvath P and Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170. DOI: 10.1126/science.1179555

Iqbal Z, Sattar MN and Shafiq M. 2016. CRISPR/Cas9: A Tool to Circumscribe Cotton Leaf Curl Disease. Frontiers in plant science 7, 475. DOI: 10.3389/fpls.2016.00475

Ivanov KI, Eskelin K, Lohmus A and Makinen K. 2014. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 95, 1415-1429. DOI: 10.1099/vir.0.064220-0

Karran RA and Sanfacon H. 2014. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Mol Plant Microbe Interact 27, 933-943. DOI: 10.1094/MPMI-04-14-0099-R

Kung YJ, Lin PC, Yeh SD, Hong SF, Chua NH, Liu LY, Lin CP, Huang YH, Wu HW, Chen CC and Lin SS. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol Plant Microbe Interact 27, 944-955. DOI: 10.1094/MPMI-04-14-0116-R

Lacombe S, Bangratz M, Vignols F and Brugidou C. 2010. The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. Plant J 61, 371-382. DOI: 10.1111/j.1365-313X.2009.04062.x

Laliberte JF and Sanfacon H. 2010. Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48, 69-91. DOI: 10.1146/annurev-phyto-073009-114239

Lindbo JA, Silva-Rosales L, Proebsting WM and Dougherty WG. 1993. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell 5, 1749-1759. DOI: 10.1105/tpc.5.12.1749

Luo Z and Chen Z. 2007. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19, 943-958. DOI: 10.1105/tpc.106.045724

Ma X, Nicole MC, Meteignier LV, Hong N, Wang G and Moffett P. 2015. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. Journal of experimental botany 66, 919-932. DOI: 10.1093/jxb/eru447

Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK and Chigurupati P. 2013. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Indian J Virol 24, 205-213. DOI: 10.1007/s13337-013-0157-9

Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L and Silhavy D. 2006. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80, 5747-5756. DOI: 10.1128/JVI.01963-05

Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B and Flores R. 2014. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J Virol 88, 11933-11945. DOI: 10.1128/JVI.01404-14

Mitter N, Koundal V, Williams S and Pappu H. 2013. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS One 8, e76276. DOI: 10.1371/journal.pone.0076276

Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R and Baulcombe, D.C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872-875. DOI: 10.1126/science.1187959

Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G, Di Serio F and Burgyan J. 2009. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One 4, e7686. DOI: 10.1371/journal.pone.0007686

Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD and Chua NH. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24, 1420-1428. DOI: 10.1038/nbt1255

Padmanabhan C, Zhang X and Jin H. 2009. Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol 12, 465-472. DOI: 10.1016/j.pbi.2009.06.005

Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, Moxon S, Dalmay T, Bisztray G and Burgyan J. 2010. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology 408, 49-56. DOI: 10.1016/j.virol.2010.09.001

Pyott DE, Sheehan E and Molnar A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol. DOI: 10.1111/mpp.12417

Qu F, Ye X and Morris, TJ. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105, 14732-14737. DOI: 10.1073/pnas.0805760105

Raja P, Sanville BC, Buchmann RC and Bisaro, DM. 2008. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82, 8997-9007. DOI: 10.1128/JVI.00719-08

Ren B, Guo Y, Gao F, Zhou P, Wu F, Meng Z, Wei C and Li Y. 2010. Multiple functions of Rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J Virol 84, 12914-12923. DOI: 10.1128/JVI.00864-10

Schuck J, Gursinsky T, Pantaleo V, Burgyan J and Behrens SE. 2013. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Res 41, 5090-5103. DOI: 10.1093/nar/gkt193

Shafiq S, Li J and Sun Q. 2016. Functions of plants long non-coding RNAs. Biochim Biophys Acta 1859, 155-162. DOI: 10.1016/j.bbagrm.2015.06.009

Shimizu T, Ogamino T, Hiraguri A, Nakazono-Nagaoka E, Uehara-Ichiki T, Nakajima M, Akutsu K, Omura T and Sasaya T. 2013. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103, 513-519. DOI: 10.1094/PHYTO-07-12-0165-R

Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J and Masuta C. 2011. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS pathogens 7, e1002021. DOI: 10.1371/journal.ppat.1002021

Singh A, Taneja J, Dasgupta I and Mukherjee SK. 2015. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16, 724-734. DOI: 10.1111/mpp.12229

Urayama S, Moriyama H, Aoki N, Nakazawa Y, Okada R, Kiyota E, Miki D, Shimamoto K and Fukuhara T. 2010. Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol 51, 58-67. DOI: 10.1093/pcp/pcp167

Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM and Taylor NJ. 2016. Artificial microRNA-derived resistance to Cassava brown streak disease. J Virol Methods 231, 38-43. DOI: 10.1016/j.jviromet.2016.02.004

Wang X, Kohalmi SE, Svircev A, Wang A, Sanfacon H and Tian L. 2013. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS One 8, e50627. DOI: 10.1371/journal.pone.0050627

Weiberg A, Wang M, Bellinger M and Jin H. 2014. Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol 52, 495-516. DOI: 10.1146/annurev-phyto-102313-045933

Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y and Li Y. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4. DOI: 10.7554/eLife.05733

Xia Z, Zhao Z, Chen L, Li M, Zhou T, Deng C, Zhou Q and Fan Z. 2016. Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci Rep 6, 20520. DOI: 10.1038/srep20520

Yepes LM, Fuchs M, Slightom JL and Gonsalves D. 1996. Sense and antisense coat protein gene constructs confer high levels of resistance to tomato ringspot nepovirus in transgenic Nicotiana species. Phytopathology 86, 417-424. DOI: 10.1094/Phyto-86-417

Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ and Chua NH. 2006. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20, 3255-3268. DOI: 10.1101/gad.1495506.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1606-8

Refbacks

  • There are currently no refbacks.