Trichoderma asperellum Ta13-17 in the growth of Solanum lycopersicum and biocontrol of Corynespora cassiicola

Sandy Esther Celis-Perera, Jairo Cristóbal-Alejo, Arturo Reyes-Ramírez, Rene Garruña-Hernández, José María Tun-Suarez, Marcela Gamboa-Angulo

Abstract


Corynespora cassiicola is a pathogen that causes lesions in different organs of tomato crops. For its control, synthetic fungicides are used that require more than one application. Trichoderma spp. is a highly interactive saprophytic fungus in the rhizosphere known as a biological control agent against plant diseases and promoter of plant growth due to its different modes of action. The effect on physiological and growth variables in Solanum lycopersicum plants inoculated with spore concentrations 1x100, 1x105, 1x106, 1x107 and 1x108 of Trichoderma asperellum Ta-13-17 and Fithan®, (as a commercial control) was evaluated. As a biocontrol agent for C. cassiicola under protected conditions. The 1x106, 1x108 and Fithan® treatments obtained the highest photosynthetic rates with 20.7, 20.6 and 19.6 µmol m-2 s-1 respectively. The 1x108 conidia mL-1 treatment obtained the highest means in the photosynthesis variables 20.6 µmol m-2 s-1, yield 1347.02 g per plant and presented a lower percentage of final severity, lower speed in the distribution of the disease and lower accumulation of area under the disease progress curve.

Keywords


Antagonist; biological control; photosynthesis; severity

References


Bhat KA. 2017. A new agar plate assisted slide culture technique to study mycoparasitism of Trichoderma sp. on Rhizoctonia solani and Fusarium oxysporum. International Journal of Current Microbiology and Applied Sciences 6: 3176–3180. https://doi.org/10.20546/ijcmas.2017.608.378

Baiyee B, Itod S and Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology 106: 96–101. https://doi.org/10.1016/j.pmpp.2018.12.009

Cetz-Chi JI, Cristóbal AJ, Tún SJ, Peraza LF y Candelero de la CJ. 2018. Especies nativas de Trichoderma spp. y su actividad antagónica contra Meloidogyne incognita en Solanum Iycopersicum L. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 26(73): 5-12. https://doi.org/10.33064/iycuaa201873136

Candelero CJ, Cristóbal, AJ, Reyes, RA, Tun, SJ, Gamboa, AM y Ruiz SE. 2015. Trichoderma spp. promotoras del crecimiento en plántulas de Capsicum chinense Jacq. y antagónicas contra Meloidogyne incognita. Revista Internacional de Botánica Experimental FYTON 84: 113-119. https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/519/1/2015_AI_id37069_Marcela_Gamboa.pdf

Costa LD, Marouelli WA, Duarte H da SS and Café-Filho AC. 2015. Standard area diagrams for assessment of powdery mildew severity on tomato leaves and leaflets. Crop Protection 67: 26-34. http://dx.doi.org/10.1016/j.cropro.2014.09.014

Garruña-Hernández R, Latournerie-Moreno L, Ayala-Garay O, Santamaría JM y Pinzón-López L 2014. Acondicionamiento pre-siembra: una opción para incrementar la germinación de semillas de chile habanero (Capsicum chinense Jacq.). Agrociencia 48: 413-423. 2014. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952014000400006

González-Marquetti I, Infante MD, Arias VY, Gorrita RS, Hernández GT, Noval PB, Martínez CB y Peteira B. 2019. Efecto de Trichoderma asperellum Samuels, Lieckfeldt and Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304. Revista de Protección Vegetal 34(2): 2224-4697. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522019000200004

Gómez-Ramírez SE, Gilchrist-Ramelli E y Reynaldi S. 2013. Importancia del aislamiento y del rango de concentración de conidias en el efecto de Trichoderma asperellum sobre el crecimiento de plántulas de Solanum lycopersicum L. Revista Colombiana de Biotecnología 15(1): 118-125. http://www.scielo.org.co/scielo.php?pid=S0123-34752013000100012&script=sci_abstract&tlng=es

Imran A, Arif M, Shah Z and Bari A. 2020. Soil application of Trichoderma and peach (Prunus persica L.) residues possesses biocontrol potential for weeds and enhances growth and profitability of soybean (Glycine max). Sarhad Journal of Agriculture 36(1): 10-20. http://dx.doi.org/10.17582/journal.sja/2020/36.1.10.20

Junxiang L, Hong N, Peng B, Wu H and Gu Q. 2019. Transformation of Corynespora cassiicola by Agrobacterium tumefaciens. Fungal Biology 123: 669-675. https://doi.org/10.1016/j.funbio.2019.05.011

Márquez-Benavidez L, Rizo LM, Montaño AN, Ruiz NN y Sánchez YJ. 2017. Respuesta de Phaseolus vulgaris a la inoculación de diferentes dosis de Trichoderma harzianum con el fertilizante nitrogenado reducido al 50%. Journal of the Selva Andina Research Society 8(2): 125-134. http://dx.doi.org/10.36610/j.jsars.2017.080200135

Mendoza RM, Alcántar GG, Aguilar SA, Etchevers BJ y Santizó RJ. 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra Latinoamericana 16(2): 135-141. http://www.redalyc.org/articulo.oa?id=57316204

Mejía-Bautista M, Reyes RA, Cristóbal AJ, Tun SJ, Borges GL y Pacheco AJ. 2016. Bacillus spp. en el Control de la Marchitez Causada por Fusarium spp. en Capsicum chinense. Revista Mexicana de Fitopatología 34(3): 208-222. DOI: 10.18781/R.MEX.FIT.1603-1

Mulu OA, Hussain T, Waghmode T, Zhao H, Sun H, Xiaojing L, Xinzhen W and Binbin L. 2020. Trichoderma Enhances Net Photosynthesis, Water Use Efficiency, and Growth of Wheat (Triticum aestivum L.) under Salt Stress. Microorganisms 8:1565. doi:10.3390/microorganisms8101565

Moo-Koh F, Cristóbal AJ, Reyes RA, Tun SJ y Gamboa AM. 2017. Identificación molecular de aislados de Trichoderma spp. y su actividad promotora en Solanum lycopersicum L. Investigación y Ciencia 25(71): 5-11. https://www.redalyc.org/journal/674/67452917001/html/

Ortíz-Castro R, Contreras CA, Macías RL and López BJ. 2009. The role of microbial signals in plant growth and development. Plant Signaling & Behavior 4(8): 701-712. https://doi.org/10.4161/psb.4.8.9047

Rodríguez F y Sandoval I. 1998. Efectividad de diferentes productos químicos y el biopreparado de Trichoderma harzianum (Rifai) contra enfermedades fúngicas del tomate de hidropónico. Fitosanidad 2(1): 1-6. https://agris.fao.org/agris-search/search.do?recordID=CU2003100496

Ruiz-Cisneros MF, Ornelas PJ, Olivas OG, Acosta MC, Sepúlveda AD, Pérez CD, Ríos, VC, Salas MM and Fernández PS. 2018. Effect of Trichoderma spp. and phytopa-thogenic fungi on plant growth and tomato fruit quality. Revista Mexicana de Fitopatología 36(3): 444-456. DOI: https://doi.org/10.18781/R.MEX.FIT.1804-5

Segaran G and Sathiavelu M. 2019. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology 21: 1-17. https://doi.org/10.1016/j.bcab.2019.101284

Wonglom P, Shin-ichi I and Sunpapao A. 2020. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology 43: 1-10. https://doi.org/10.1016/j.funeco.2019.100867

Ying-Tzu L, San-Gwang H, Yuh-Ming H and Cheng-Hua H. 2017. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 30:1-8. https://doi.org/10.1016/j.cropro.2017.03.021

Zhao L, Wang F, Zhang Y and Zhang J. 2014. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Journal of Basic Microbiology 54: S115-S124. https://doi.org/10.1016/S2095-3119(20)63415-3

Zin N A and Badaluddin NA 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65:168–178. https://doi.org/10.1016/j.aoas.2020.09.003.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2207-1

Refbacks

  • There are currently no refbacks.