Biological control perspectives in the pine forest (Pinus spp.), an environmentally friendly alternative to the use of pesticides

Luis Martín Gutiérrez-Flores, Lucía López-Reyes, Enrique Hipólito-Romero, Eduardo Torres-Ramírez, Elsa Iracena Castañeda-Roldán, Amparo Mauricio-Gutiérrez

Abstract


Forests are important for their economic, ecological, and social contribution to humanity. However, there is a decrease in the forest mass due to different causes such as fire, intensive agriculture, overgrazing, air pollution, and the presence of pests and diseases of fungal origin. A practice to deal with diseases caused by fungi has been the application of broad-spectrum, fungicides with negative consequences on the environment. Biological control is an alternative for disease management in pine species. Due to the need to conserve the diversity of pine species, this review addresses issues relevant to the importance of forests in the world, diseases in Pinus spp., fungal control by chemical and biological agents, referring to different biological control mechanisms and the most studied biofungicides such as Trichoderma sp. and Bacillus sp. in Pinus spp. The various scientific reports on the biological control of fungi in different pine species places it as a promising option in reducing the pathogenicity and incidence of fungal diseases with less negative effects on the environment than synthetic pesticides of chemical origin. Therefore, this review aims to transmit information on biological control in pine trees as a friendly alternative for the recovery of forests.


Keywords


Forest health; biocontrol; conservation; fungal diseases

Full Text:

PDF

References


Adusei-Fosu K and Rolando CA. 2018. Chemical control -review of control methods and fungicides. Ministry for Primary Industries Biosecurity. New Zealand Technical Paper No. 2019/24. Wellington, New Zealand. 31p. http://www.mpi.govt.nz/news-and-resources/publications/

Ahumada R, Rotella A, Slippers B and Wingfield MJ. 2013. Pathogenicity and sporulation of Phytophthora pinifolia on Pinus radiata in Chile. Australasian Plant Pathology 42: 413-420. https://doi.org/10.1007/s13313-013-0212-4

Alenezi FN, Fraser S, Be?ka M, Do?mu? TH, Heckova Z, Oskay F, Belbahri L and Woodward S. 2015. Biological control of Dothistroma needle blight on pine with Aneurinibacillus migulanus. Forest Pathology 46(5): 555–558. https://doi.org/10.1111/efp.12237

Alfiky A and Weisskopf L. 2021. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. Journal of Fungi 7(1): 61. https://doi.org/10.3390/jof7010061

Arango-Velez A, El Kayal W, Copeland CCJ, Zaharia LI, Lusebrink I and Cooke JEK. 2016. Differences in defense responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit. Plant, Cell and Environment 39(4): 726–744. https://doi.org/10.1111/pce.12615

Balvanera P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas 21(1-2): 136–147. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/33

Behnke?Borowczyk J, Kwa?na H and Kulawinek B. 2018. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. Forest Pathology 49(2): e12487. https://doi.org/10.1111/efp.12487

Belén M, Errasti A y Villacide J. 2011. Patagonia y su asociación con plagas entomológicas Manejo Integrado de Plagas Forestales. Ediciones Instituto Nacional de Tecnología Agropecuaria. Argentina. 14p.

Blodgett TJ, Eyles A and Bonello P. 2007. Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiology 27(4): 511–517. https://doi.org/10.1093/treephys/27.4.511

Bonello P and Blodgett TJ. 2003. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiological and Molecular Plant Pathology 63(5): 249–261. https://doi.org/10.1016/j.pmpp.2004.02.002

Bravo N, Grimalt JO, Mazej D, Tratnik JS, Sarigiannis DA and Horvat M. 2020. Mother/child organophosphate and pyrethroid distributions. Environment International 134(2020): 105264. https://doi.org/10.1016/j.envint.2019.105264

Brown S and Verschuuren B. 2018. Cultural and spiritual significance of nature in protected and conserved areas: The 'deeply seated bond'. Pp:1-13. In: Brown S and Verschuuren B (eds.). Cultural and Spiritual Significance of Nature in Protected Areas: Governance, Management and Policy. Routledge. London. 334p. https://doi.org/10.4324/9781315108186-1

Capieau K, Stenlid J and Stenström E. 2004. Potential for biological control of Botrytis cinerea in Pinus sylvestris seedlings. Scandinavian Journal of Forest Research 19(4): 312–319. https://doi.org/10.1080/02827580310019293

Carrasco A, Sanfuentes E, Durán A y Valenzuela S. 2016. Cancro resinoso del pino: ¿una amenaza potencial para las plantaciones de Pinus radiata en Chile?. Gayana Botánica 73(2): 369-380. http://dx.doi.org/10.4067/S0717-66432016000200369

Chen L, Bóka B, Kedves O, Nagy VD, Szucs A, Champramary S, Roszik R. Patocskai Z, Münsterkötter M, Huynh T, Indic B, Vágvölgyi C, Sipos G and Kredics L. 2019. Towards the biological control of devastating forest pathogens from the genus Armillaria. Forests 10(11): 1013. https://doi.org/10.3390/f10111013

Choi HK, Song GC, Yi HS and Ryu CM. 2014. Field Evaluation of the Bacterial Volatile Derivative 3-Pentanol in Priming for Induced Resistance in Pepper. Journal of Chemical Ecology 40(2014): 882–892. https://doi.org/10.1007/s10886-014-0488-z

Cibrián TD, Alvarado-Rosale D y García-Díaz SE. 2007. Enfermedades forestales en México/Forest Diseases in Mexico. UACH; Conafor-Semarnat, México; Forest Service USDA, EUA; NRCAN Forest Service, Canadá y Comisión Forestal de América del Norte, COFAN, FAO. Chapingo, México. 587p.

COFEPRIS. Comisión Federal para Protección contra Riesgos Sanitarios. 2019. Consulta de Registros Sanitarios de Plaguicidas, Nutrientes Vegetales y LMR. http://siipris03.cofepris.gob.mx/Resoluciones/Consultas/ConWebRegPlaguicida.asp (consulta, septiembre 2020).

Cram MM, Frank MS and Mallams KM. 2012. Forest Nursery Pests. Agriculture Handbook 680, USDA Forest Service. Washington, DC, USA. 202p. https://www.fs.usda.gov/treesearch/pubs/54434

Dai Y, Wu XQ, Wang YH and Zhu ML. 2021. Biocontrol potential of Bacillus pumilus HR10 against Sphaeropsis shoot blight disease of pine. Biological Control 152(2021): 104458. https://doi.org/10.1016/j.biocontrol.2020.104458

DEAQ. 2022. Diccionario de Especialidades Agroquímicas. 32th Edición. PLM. Cd. de México, México. 1178p. https://www.agroquimicos-organicosplm.com/

del Puerto RAM, Suárez TS y Palacio EDE. 2014. Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología 52(3): 372–387. http://scielo.sld.cu/pdf/hie/v52n3/hig10314.pdf

FAO and UNEP. 2020. The State of the World’s Forests 2020. FAO and UNEP. Roma. 224p. https://doi.org/10.4060/ca8642en

FAO and WHO. 2016. International Code of Conduct on Pesticide Management. Guidelines on highly hazardous pesticides. FAO and WHO. Roma. 37p. www.fao.org/publications

FAO. 2011. FAO state of the world’s forests. In Forestry Chronicle. 9th Edición. Vol. 80, Issue 2. FAO. Roma. 164p. http://www.fao.org/3/i2000e/i2000e.pdf

FAO. 2018. The state of the world´s Forest. FAO. Roma. 118p. https://doi.org/10.1016/b0-12-145160-7/00156-3

Ferrer A. 2003. Intoxicación por plaguicidas. Anales del Sistema Sanitario de Navarra 26:155–171. https://doi.org/10.4321/s1137-66272003000200009

Flores-Pacheco JA. 2017. Chancro resinoso del pino (Fusarium circinatum) historia, evolución, dispersión y estrategia de manejo. Nexo Revista Científica 30(1): 19-42. http://dx.doi.org/10.5377/nexo.v30i01.5170

Flores-Villegas MY, González-Laredo RF, Pompa-García M, Ordaz-Díaz LA, Prieto-Ruíz JA y Domínguez-Calleros PA. 2019. Uso de plaguicidas y nuevas alternativas de control en el sector forestal. Foresta Veracruzana 21(1): 29–38. https://www.redalyc.org/jatsRepo/497/49759430007/html/index.html

García-Díaz SE, Aldrete A, Alvarado-Rosales D, Cibrián-Tovar D and Méndez-Montiel JT. 2019. Trichoderma harzianum Rifai as a biocontrol of Fusarium circinatum Nirenberg & O´Donnell in seedlings of Pinus greggii Engelm. ex Parl. in three substrates. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(3): 353–367. https://doi.org/10.5154/r.rchscfa.2018.12.088

Gepp V, Vero S, Cassanello ME, Romero G, Silvera E, González P, Rebellato J, Ferreira Y y Bentancur O. 2012. Resistencia a fungicidas en Botrytis cinerea en el Uruguay. Agrociencia Uruguay 16(1): 97–107. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482012000100012

Gordon TR, Kirkpatrick SC, Aegerter BJ, Wood DL and Storer AJ. 2006. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant Pathology 55(2): 231–237. https://doi.org/10.1111/j.1365-3059.2006.01351.x

Guédez C, Castillo C, Cañizales L and Olivar R. 2008. “Biological control” a tool for sustaining and sustainable development. Academia 7(13): 50–74. http://erevistas.saber.ula.ve/index.php/academia/article/view/6030

Guerra C, Cruz H, Vila I, Duarte A y López MO. 2004. Principales hongos que afectan a Pinus tropicalis Morelet en Cuba. Fitosanidad 8(2): 9-12. https://www.redalyc.org/pdf/2091/209117836001.pdf

Guerrero-Prieto VM, Blanco Pérez AC, Guigón López C, Tamayo Urbina CJ, Molina Corral FJ, Berlanga Reyes DI, Carvajal Millan E y Ávila Quezada GD. 2011. Competencia por Nutrientes; Modo de Acción de Candida oleophila Contra Penicillium expansum y Botrytis cinerea. Revista Mexicana de Fitopatología 29(2): 90–97. http://www.scielo.org.mx/pdf/rmfi/v29n2/v29n2a1.pdf

Guo LD, Huang GR and Wang Y. 2008. Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. Journal of Integrative Plant Biology 50(8): 997–1003. https://doi.org/10.1111/j.1744-7909.2008.00394.x

Guo S, Li X, He P, Ho H, Wu Y and He Y. 2015. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of Industrial Microbiology and Biotechnology 42(6): 925–937. https://doi.org/10.1007/s10295-015-1612-y

Gutiérrez-Flores LM, Mauricio-Gutiérrez A, Carcaño-Montiel MG, Portillo-Manzano E, Gómez-Velázquez L, Sánchez-Alonso P and López-Reyes L. 2020. Fungi associated with sick trees of Pinus patula in Tetela de Ocampo, Puebla, Mexico. Archives of Phytopathology and Plant Protection 53(13-14): 591-611. https://doi.org/10.1080/03235408.2020.1778241

Hernández-Lauzardo AN, Bautista-Baños S, Velázquez-Del Valle MG y Hernández-Rodríguez A. 2007. Uso de Microorganismos Antagonistas en el Control de Enfermedades Postcosecha en Frutos. Revista Mexicana de Fitopatología 25(1): 66–74. http://www.scielo.org.mx/pdf/rmfi/v25n1/v25n1a9.pdf

Heydari A and Pessarakli M. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences 10(4): 273–290. https://doi.org/10.3923/jbs.2010.273.290

Holmes L, Mandjiny S and Upadhyay D. 2016. Biological Control of Agriculture Insect Pests. European Scientific Journal 12 (SPECIAL edition): 216–225. https://core.ac.uk/download/pdf/236413921.pdf

Illa C, Pérez AA, Torassa M y Pérez MA. 2020. Efecto de biocontrol y promoción del crecimiento en maní por Trichoderma harzianum y Bacillus subtilis en condiciones controladas y campo. Revista Mexicana de Fitopatología 38(1): 119-131. http://dx.doi.org/10.18781/R.MEX.FIT.1910-6

Infante D, Martínez B, González N y Reyes Y. 2009. Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista Protección Vegetal 24(1): 14–21. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522009000100002

Iturritxa E, Trask T, Mesanza N, Raposo R, Elvira-Recuenco M and Patten CL. 2017. Biocontrol of Fusarium circinatum infection of young Pinus radiata Trees. Forests 8(2): 32. https://doi.org/10.3390/f8020032

Jiménez-Delgadillo R, Valdés-Rodríguez SE, Olalde-Portugal V, Abraham-Juárez R y García-Hernández JL. 2018. Efecto del pH y temperatura sobre el crecimiento y actividad antagónica de Bacillus subtilis sobre Rhizoctonia solani. Revista Mexicana de Fitopatología 36(2): 256-275. https://doi.org/10.18781/R.MEX.FIT.1711-3

Kang X, Guo Y, Leng S, Xiao L, Wang L, Xue Y and Liu C. 2019. Comparative transcriptome profiling of Gaeumannomyces graminis var. tritici in wheat roots in the absence and presence of biocontrol Bacillus velezensis CC09. Frontiers in Microbiology 10: 1474. https://doi.org/10.3389/fmicb.2019.01474

Ken S, Sasaki N, Entani T, Ma HO, Thuch P and Tsusaka TW. 2020. Assessment of the local perceptions on the drivers of deforestation and forest degradation, agents of drivers, and appropriate activities in Cambodia. Sustainability 12(23): 9987. https://doi.org/10.3390/su12239987

Larsson R, Menkis A and Olson A. 2021. Diplodia sapinea in Swedish forest nurseries. Plant Protection Science 57(1): 66-69. https://doi.org/10.17221/68/2020-PPS

Legrand F, Picot A, Cobo-Díaz JF, Chen W and Le Floch G. 2017. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control 113(2017): 26–38. https://doi.org/10.1016/j.biocontrol.2017.06.011

Liu X, Cao A, Yan D, Ouyang C, Wang Q and Li Y. 2021. Overview of mechanisms and uses of biopesticides. International Journal of Pest Management 67(1): 65–72. https://doi.org/10.1080/09670874.2019.1664789

Maciel CG, Walker C, Muniz MF and Araújo MM. 2014. Antagonism of Trichoderma spp. and Bacillus subtilis (UFV3918) to Fusarium sambucinum in Pinus elliottii Engelm. Revista Árvore 38(3): 505–512. https://dx.doi.org/10.1590/S0100-67622014000300013

Marmolejo-Monciváis JG. 2018. Distribución vertical de hongos en hojas de tres especies de pinos en Nuevo León, México. Revista Mexicana de Ciencias Forestales 9(50): 379–399. https://doi.org/10.29298/rmcf.v9i50.253

Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Wingfield MJ, Crous PW, Spatafora JW, Hesse CN, Robbertse B and Slippers B. 2017. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Molecular Plant Pathology 18(4): 477–488. https://doi.org/10.1111/mpp.12495

Martínez B, Infante D y Reyes Y. 2013. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal 28(1): 1–11. http://scielo.sld.cu/pdf/rpv/v28n1/rpv01113.pdf

Martínez-Álvarez P, Fernández-González RA, Sanz-Ros AV, Pando V and Diez JJ. 2016. Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control 94(2016): 1–10. https://doi.org/10.1016/j.biocontrol.2015.11.011

Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A and Upadhyay RS. 2020. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology 60(10): 828–861. https://doi.org/10.1002/jobm.202000370

Mesanza N, Iturritxa E, Patten CL. 2016. Native rhizobacteria as biocontrol agents of Heterobasidion annosum s.s. and Armillaria mellea infection of Pinus radiata. Biological Control 101: 8–16. https://doi.org/10.1016/j.biocontrol.2016.06.003

Michel-Aceves AC, Otero-Sánchez MA, Rebolledo-Domínguez O y Lezama-Gutiérrez R. 2004. Producción y actividad antibiótica del 6 pentil-?-pirona de Trichoderma spp., sobre especies de Fusarium. Revista Mexicana de Fitopatología 22(1):14-21. https://www.redalyc.org/pdf/612/61222103.pdf

Mora-Aguilera G, Cortez-Madrigal H and Acevedo-Sánchez G. 2017. Epidemiology of entomopathogens: Basis for rational use of microbial control of insects. Southwestern Entomologist 42(1): 153-169. https://doi.org/10.3958/059.042.0116

Moreno-Reséndez A, Carda Mendoza V, Reyes Carrillo JL, Vásquez Arroyo J y Cano Ríos P. 2018. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20(1): 68–83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707

Moreno-Rico O, Sánchez-Martínez G, Marmolejo-Monsiváis JG, Pérez-Hernández K y Moreno-Manzano CE. 2015. Diversidad de hongos Ophiostomatoides en pinos de la sierra Fría de Aguascalientes, México, asociados con Dendroctonus mexicanus. Revista Mexicana de Biodiversidad 86(2015): 1-8. http://dx.doi.org/10.7550/rmb.46751

Narváez-Valderrama JF, Palacio Baena JA y Molina-Pérez FJ. 2012. Persistencia de plaguicidas en el ambiente y su ecotoxicidad: Una revisión de los procesos de degradación natural. Gestión y Ambiente 15(3): 27–38. https://www.redalyc.org/articulo.oa?id=169424893002

NJ Health, State of New Jersey Department of Health. 2017. Hazardous Substance. https://www.nj.gov/health/workplacehealthandsafety/right-to-know/hazardous-substances/ (consulta, junio 2022).

Ocegueda-Reyes MD, Casas-Solís J, Virgen-Calleros G, González-Eguiarte DR, López-Alcocer E y Olalde-Portugal V. 2020. Aislamiento, identificación y caracterización de rizobacterias antagónicas a Sclerotium cepivorum. Revista Mexicana de Fitopatología 38(1): 146-159. https://doi.org/10.18781/R.MEX.FIT.1911-2

Ortíz I, Avila-Chávez MA y Torres LG. 2014. Plaguicidas en México: usos, riesgos y marco regulatorio. Revista Latinoamericana de Biotecnología Ambiental y Algal 5(1): 26–46. https://doi.org/10.7603/s40682-014-0003-9

Oskay F, Laas M, Mullett M, Lehtijärvi A, Do?mu?-Lehtijärvi HT, Woodward S and Drenkhan R. 2020. First report of Lecanosticta acicula on pine and non-pine hosts in Turkey. Forest Pathology 50(6): e12654. https://doi.org/10.1111/efp.12654

Osorio MO. 2007. Ceratocystis pilifera, hongo causante de mancha azul en madera de Pinus radiata. Bosque 6(2): 116-119. https://doi.org/10.4206/bosque.1985.v6n2-07

Ospina PCM, Hernánndez RRJ, Rincón EA, Sánchez OFA, Urrego MJB, Rodas PCA, Ramírez CCA y Riaño HNM. 2011. El Pinus patula. Pinus patula Schiede and Deppe in Schlecht. & Cham. Guías silviculturales para el manejo de especies forestales con miras a la producción de madera en la zona andina colombiana. Editorial Blanecolor S. A. S. Manizales, Colombia. 104p. https://www.cenicafe.org/es/publications/pinus.pdf.

Queloz V, Wey T and Holdenrieder O. 2014. First record of Dothistroma pini on Pinus nigra in Switzerland. Plant Disease 98(12): 1744. https://doi.org/10.1094/PDIS-06-14-0630-PDN

Raitelaityté K, Markovskaja S, Paulauskas A, Hsiang T and Oszako T. 2020. First molecular detection of Lecanosticta acicula from Poland on Pinus mugo. Forest Pathology 50(2): e12589. https://doi.org/10.1111/efp.12589

Ramírez JA y Lacasaña M. 2001. Plaguicidas: clasificación, uso, toxicología y medición de la exposición. Archivos de Prevención de Riesgos Laborales 4(2): 67–75. http://sistemamid.com/panel/uploads/biblioteca/2014-05-01_11-59-0899004.pdf

Reglinski T and Dick M. 2005. Biocontrol of forest nursery pathogens. New Zealand Journal of Forestry 50(3): 19–26. http://www.nzjf.org.nz/free_issues/NZJF50_3_2005/CD6F47DA-12F9-4F5A-9914-BEABE49C0054.pdf

Reignoux SNA, Green S and Ennos RA. 2014. Molecular identification and relative abundance of cryptic Lophodermium species in natural populations of Scots pine, Pinus sylvestris L. Fungal Biology 118(9-10): 835–845. https://doi.org/10.1016/j.funbio.2014.07.002

Rios-Velasco C, Caro-Cisneros JN, Berlanga-Reyes DI, Ruíz-Cisneros MF, Ornelas-Paz JJ, Salas-Marina MA, Villalobos-Pérez E y Guerrero-Prieto VM. 2016. Identificación y actividad antagónica in vitro de Bacillus spp. y Trichoderma spp. contra hongos fitopatógenos comunes. Revista Mexicana de Fitopatología 34(1): 84-99. http://dx.doi.org/10.18781/R.MEX.FIT.1507-1

Robles-Yerena L, Leyva-Mir SG, Cruz-Gómez A, Camacho-Tapia M, Nieto-Ángel D y Tovar-Pedraza JM. 2016. Fusarium oxysporum Schltdl. y Fusarium solani (Mart.) Sacc. causantes de la marchitez de plántulas de Pinus spp. en vivero. Revista Mexicana de Ciencias Forestales 7(36): 25-36. http://www.scielo.org.mx/scielo.php?pid=S2007-11322016000400025&script=sci_abstract&tlng=es

Ruiz-Cisneros MF, Ornelas-Paz JJ, Olivas-Orozco GI, Acosta-Muñiz CH, Sepúlveda-Ahumada DR, Pérez-Corral DA, Rios-Velasco C, Salas-Marina MA y Fernández-Pavía SP. 2018. Efecto de Trichoderma spp. y hongos fitopatógenos sobre el crecimiento vegetal y calidad del fruto de jitomate. Revista Mexicana de Fitopatología 36(3): 444-456. https://doi.org/10.18781/R.MEX.FIT.1804-5

Sanz-Ros AV, Müller MM, San Martín R and Diez JJ. 2015. Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in Northern Spain. Fungal Biology 119(10): 870–883. https://doi.org/10.1016/j.funbio.2015.06.008

Serra AA, Bittebière AK, Mony C, Slimani K, Pallois F, Renault D, Couée I, Gouesbet G and Sulmon C. 2020. Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. Science of the Total Environment 744(2020): 140772. https://doi.org/10.1016/j.scitotenv.2020.140772

Sheller MA, Shilkina EA, Ibe AA, Razdorozhnaya TY and Sukhikh T. 2020. Phytopathogenic fungi in forest nurseries of Middle Siberia. iForest 13(6): 507-512. https://doi.org/10.3832/ifor3507-013

Soria S, Alonso R and Bettucci L. 2012. Endophytic Bacteria from Pinus taeda L. as Biocontrol Agents of Fusarium circinatum Nirenberg & O’Donnell. Chilean Journal of Agricultural Research 72(2): 281–284. https://doi.org/10.4067/s0718-58392012000200018

Speck-Planche A, Kleandrova VV, Luan F and Cordeiro MNDS. 2012. Predicting multiple ecotoxicological profiles in agrochemical fungicides: A multi-species chemoinformatic approach. Ecotoxicology and Environmental Safety 80: 308–313. https://doi.org/10.1016/j.ecoenv.2012.03.018

Springgay E. 2019. Forest as Nature-based solutions for water. Unasylva 70(1): 3–13. http://www.fao.org/3/ca6842en/CA6842EN.pdf

Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy HV and Peršoh D. 2014. A polyphasic taxonomy of Daldinia (Xylariaceae). Studies in Mycology 77(1): 1–143. https://doi.org/10.3114/sim0016

Steyaert JM, Ridgway HJ, Elad Y and Stewart A. 2003. Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. New Zealand Journal of Crop and Horticultural Science 31(4): 281–291. https://doi.org/10.1080/01140671.2003.9514263

Tobón-Marulanda FÁ, López-Giraldo LA y Paniagua-Suárez RE. 2010. Contaminación del agua por plaguicidas en un área de Antioquia. Revista de Salud Publica 12(2): 300–307. https://doi.org/10.1590/s0124-00642010000200013

van der Nest A, Wingfiel MJ, Ortiz PC and Barnes I. 2019. Biodiversity of Lecanosticta pine-needle blight pathogens suggest a Mesoamerican Centre of origin. IMA Fungus 10: 2. https://doi.org/10.1186/s43008-019-0004-8

van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ and Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63: 39–59. https://doi.org/10.1007/s10526-017-9801-4

Vargas-Hoyos HA y Gilchrist-Ramelli E. 2015. Producción de enzimas hidrolíticas y actividad antagónica de Trichoderma asperellum sobre dos cepas de Fusarium aisladas de cultivos de tomate (Solanum lycopersicum). Revista Mexicana de Micología 42: 9–16. http://www.scielo.org.mx/pdf/rmm/v42/v42a3.pdf

Vicente CSL, Nascimento FX, Barbosa P, Ke HM, Tsai IJ, Hirao T, Cock PJA, Kikuchi T, Hasegawa K and Mota M. 2016. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster. Microbial Ecology 72(3): 669–681. https://doi.org/10.1007/s00248-016-0820-y

Villacide J y Corley J. 2012. Introducción a la teoría del control biológico de plagas. INTA, Cambio Rural. Cuadernillo No. 15 Serie Técnica: Manejo integrado de plagas forestales. Vol. 15. Río Negro, Argentina. https://inta.gob.ar/sites/default/files/script-tmp-control_biolgico_de_plagas.pdf

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI y De los Santos-Villalobos S. 2017. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología 36(1): 95-130. http://dx.doi.org/10.18781/R.MEX.FIT.1706-5

Vinod K and Sabah A. 2018. Plant Defense against Pathogens: The Role of Salicylic Acid. Research Journal of Biotechnology 13(12): 97–103. https://www.researchgate.net/publication/329244822

Yang LN, He MH, Ouyang HB, Zhu W, Pan ZC, Sui QJ, Shang LP and Zhan J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology 19(1): 205. https://doi.org/10.1186/s12866-019-1574-8

Yu C and Luo X. 2020. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biological Control 150: 104352. https://doi.org/10.1016/j.biocontrol.2020.104352




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2205-5

Refbacks

  • There are currently no refbacks.