Chlorine and its importance in the inactivation of bacteria, can it inactivate viruses?

Laila Nayzzel Muñoz-Castellanos, Alejandra Borrego-Loya, Cindy Viviana Villalba-Bejarano, Román González-Escobedo, Nuvia Orduño-Cruz, Grisel Paloma Villezcas-Villegas, María Janeth Rodríguez-Roque, Graciela Dolores Avila-Quezada, Irasema Vargas-Arispuro

Abstract


Sodium hypochlorite (NaClO) and its active ingredient, hypochlorous acid (HClO), are the most widely used chlorine-based disinfectants. HClO is a fast-acting antimicrobial that interacts with many biomolecules, including amino acids, lipids, nucleic acids, and sulfur containing membrane components, causing cell damage. In this review, we present examples of the effectiveness of chlorine in general disinfection procedures to inactivate bacteria and, under some conditions, bacteria in biofilms and viruses.

Keywords


Bacteria; COVID-19; pathogen inactivation; virus

Full Text:

PDF

References


Avila-Quezada G, Sánchez E, Gardea-Béjar AA and Acedo-Félix E. 2010. Salmonella spp. and Escherichia coli: survival and growth in plant tissue. New Zealand Journal of Crop and Horticultural Science 38(2):47-55. https://doi.org/10.1080/01140671003767834

Avila-Quezada G, Sánchez E, Muñoz E, Martínez LR and Villalobos E. 2008. Diagnosis of the microbiological quality of fruits and vegetables in Chihuahua, Mexico. Phyton International Journal of Experimental Botany 77:129-136. https://doi.org/10.32604/phyton.2008.77.129

Barrette W, Albrich J and Hurst J. 1987. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli. Infection and Immunity 55(10): 2518-2525. https://iai.asm.org/content/iai/55/10/2518.full.pdf

Campagna MV, Faure-Kumar E, Treger JA, Cushman JD, Grogan TR, Kasahara N and Lawson GW. 2016. Factors in the selection of surface disinfectants for use in a laboratory animal setting. Journal of the American Association for Laboratory Animal Science 55(2): 175-188. https://www.ingentaconnect.com/content/aalas/jaalas/2016/00000055/00000002/art00009#

Chen CJ, Chen CC and Ding SJ. 2016. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. International Journal of Molecular Sciences 17(7): 1161. https://doi.org/10.3390/ijms17071161

Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, Peiris M and Poon LML. 2020. Stability of SARS-CoV2 in different environmental conditions. The Lancet Microbe 1(1): E10. https://doi.org/10.1016/S2666-5247(20)30003-3

Da Cruz Nizer WS, Inkovskiy V and Overhage J. 2020. Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid. Microorganisms 8(8): 1220. https://doi.org/10.3390/microorganisms8081220

Dever G, Wainwright CL, Kennedy S and Spickett CM. 2006. Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochimica Polonica 53(4): 761-768. https://doi.org/10.18388/abp.2006_3304

Duizer E, Bijkerk P, Rockx B, De Groot A, Twisk F and Koopmans M. 2004. Inactivation of caliciviruses. Applied and Environmental Microbiology 70(8): 4538-4543. https://doi.org/10.1128/AEM.70.8.4538-4543.2004

Fukuzaki S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Science 11(4): 147-157. https://doi.org/10.4265/bio.11.147

Ghernaout D. 2017. Microorganisms’ electrochemical disinfection phenomena. EC Microbiology 9: 160-169. https://www.academia.edu/33867440/Microorganisms_Electrochemical_Disinfection_Phenomena

Gil MI, Selma MV, Suslow T, Jacxsens L, Uyttendaele M and Allende A. 2015. Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Critical Reviews in Food Science and Nutrition 55(4): 453-468. https://doi.org/10.1080/10408398.2012.657808

Hirneisen KA and Kniel KE. 2013. Inactivation of internalized and Surface contaminated enteric viruses in green onions. International Journal of Food Microbiology 166(2): 201-206. https://doi.org/10.1016/j.ijfoodmicro.2013.07.013

Hulkower RL, Casanova LM, Rutala WA, Weber DJ and Sobsey. 2011. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. American Journal of Infection Control 39(5): 401-407. https://doi.org/10.1016/j.ajic.2010.08.011

Kampf G, Todt D, Pfaender S and Steinmann E. 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection 104(3): 246-251. https://doi.org/10.1016/j.jhin.2020.01.022

Kiamco MM, Zmuda HM, Mohamed A, Call DR, Raval YS, Patel R and Beyenal H. 2019. Hypochlorous-acid-generating electrochemical scaffold for treatment of wound biofilms. Scientific Reports 9: 2683. https://doi.org/10.1038/s41598-019-38968-y

Kingsley DH, Vincent EM, Meade GK, Watson CL and Fan X. 2014. Inactivation of human norovirus using chemical sanitizers. International Journal of Food Microbiology 171(3): 94-99. https://doi.org/10.1016/j.ijfoodmicro.2013.11.018

Lafaurie GI, Calderón JL, Zaror C, Millán LV and Castillo DM. 2015. Ácido Hipocloroso: una nueva alternativa como agente antimicrobiano y para la proliferación celular para uso en odontología. International Journal of Odontostomatology 9(3): 475-481. http://dx.doi.org/10.4067/S0718-381X2015000300019

Lai CC, Shih TP, Ko WC, Tang HJ and Hsueh PR. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 55(3): 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

Lin Q, Lim JY, Xue K, Yew PYM, Owh C, Chee PL and Loh XJ. 2020. Sanitizing agents for virus inactivation and disinfection. View 1(2): e16. https://doi.org/10.1002/viw2.16

Maris P. 1989. Virucidal efficacy of eight disinfectants against pneumovirus, coronavirus and parvovirus. Annals of Veterinary Research 21(4): 275-279. https://europepmc.org/article/med/2288453

Molina-Chavarria A, Félix-Valenzuela L, Silva-Campa E and Mata-Haro V. 2020. Evaluation of gamma irradiation for human norovirus inactivation and its effect on strawberry cells. International Journal of Food Microbiology 330: 108695. https://doi.org/10.1016/j.ijfoodmicro.2020.108695

Nussbaumer-Streit B, Mayr V, Dobrescu AI, Chapman A, Persad E, Klerings I, Wagner G, Siebert U, Ledinger D, Zachariah C and Gartlehner G. 2020. Quarantine alone or in combination with other public health measures to control COVID?19: a rapid review. Cochrane Database of Systematic Reviews Art. No. CD013574 9:1-77. https://doi.org/10.1002/14651858.CD013574.pub2

Oirsa. 2020. Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos https://www.oirsa.org/contenido/2020/Guia%20para%20uso%20de%20cloro%20como%20desinfectante%20en%20establecimientos%2023.06.2020.pdf. (consulta: noviembre, 2020)

Owoseni M and Okoh A. 2017. Evidence of emerging challenge of chlorine tolerance of Enterococcus species recovered from wastewater treatment plants. International Biodeterioration & Biodegradation 120: 216-223. https://doi.org/10.1016/j.ibiod.2017.02.016

Patel P, Sanghvi S, Malik K and Khachemoune A. 2020. Back to the basics: Diluted bleach for COVID-19. Journal of the American Academy of Dermatology 83(1): 279-280. https://doi.org/10.1016/j.jaad.2020.04.033

Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R and Farokhzad OC. 2012. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5): 4279-4287. https://doi.org/10.1021/nn3008383

Riddell S, Goldie S, Hill A, Eagles D and Drew TW. 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virology Journal 17: 145. https://doi.org/10.1186/s12985-020-01418-7.

Sam CH and Lu HK. 2009. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. Journal of Dental Sciences 4: 45-54. https://doi.org/10.1016/S1991-7902(09)60008-8.

Sattar, S. 2004. Microbicides and the environmental control of nosocomial viral infections. Journal of Hospital Infection 56(2): 64–69. https://doi.org/10.1016/j.jhin.2003.12.033

Spickett CM, Jerlich A, Panasenko OM, Arnhold J, Pitt AR, Stelmaszyñska T and Schaur J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochimica Polonica 47(4): 889-899. http://www.actabp.pl/pdf/4_2000/889.pdf

Torres-Armendáriz, V, Manjarrez-Domínguez CB, Acosta-Muñiz CH, Guerrero-Prieto VM, Parra-Quezada RA, Noriega-Orozco LO and Ávila-Quezada GD. 2015. Interactions between Escherichia coli O157:H7 and food plants. Has this bacterium developed internalization mechanisms? Mexican Journal of Phytopathology 34(1): 64-83. https://doi.org/10.18781/R.MEX.FIT.1507-4

Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, Wit E and Munster VJ. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine 382: 1564-1567. https://doi.org/10.1056/NEJMc2004973

Weng S, Luo Y, Li J, Zhou B, Jacangelo JG and Schwab KJ. 2016. Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control 60: 543-551. https://doi.org/10.1016/j.foodcont.2015.08.031

WHO. 2020a. Cleaning and disinfection of environmental surfaces in the context of COVID-19. World Health Organization. https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19. (consulta, noviembre 2020).

WHO. 2020b. Water, sanitation, hygiene and waste management for COVID-19: technical brief, 03 March 2020. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/331305/WHO-2019-NcOV-IPC_WASH-2020.1-eng.pdf (consulta, noviembre 2020).

Williams MM and Braun-Howland EB. 2003. Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Applied and Environmental Microbiology 69(9): 5463-5471. https://doi.org/10.1128/AEM.69.9.5463-5471.2003

Zoffoli JP, Latorre BA, Daire N and Viertel S. 2005. Efectividad del dióxido de cloro, en función de la concentración, pH y tiempo de exposición en el control de Botrytis cinerea, Penicillium expansum y Rhizopus stolonifer. Ciencia e Investigación Agraria 32(3): 181-188. https://dioxido.com.uy/Efectividad-del-Dioxido-de-Cloro.pdf




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2021-4

Refbacks

  • There are currently no refbacks.