Phylogeny of ATP/ADP translocase gene from Candidatus Liberibacter spp., causal agents of HLB

Felipe Roberto Flores-de la Rosa, Cynthia Guadalupe Rodríguez-Quibrera, Ricardo Santillán-Mendoza

Abstract


The bacteria that cause citrus huanglongbing (HLB), Candidatus Liberibacter spp., are obligate bacteria to the citrus phloem and to different systems of the vector insect, Diaphorina citri, therefore, the genomic approach has been useful to study its pathogenicity mechanisms. This approach has allowed the identification of a homologous copy of the gene coding for the enzyme ATP / ADP translocase, which has the ability to import ATP and nucleotides from the host, causing considerable energy parasitism. This enzyme has been related to the endoparasitic activity of animal and human pathogens more than to phytopathogens. The present work analyzed the evolutionary relationship between the amino acid sequence of ATP / ADP translocase between different species of Ca. Liberibacter and groups such as Ricketssia sp. and Chlamydia sp. Phylogenetic analyzes show that the variation in the sequence of the gene coding for the enzyme is delimited in clades corresponding to the species of Ca. Liberibacter, suggesting that the variation in the enzyme responds to a co-evolutionary process. Also, the phylogeny shows that the closest common ancestor to Ca. Liberibacter could be a non-pathogenic endosymbiont of the genus Ca. Midichloria. Amino acid sequence conservation analysis shows that there are several positions in the sequence that could be related to species variation. The present work offers the hypothesis that the evolutionary origin of the energy parasitism capacity of the causal agents of HLB is a nonpathogenic endosymbiont.


Keywords


coevolution; energy parasitism; citrus greening

Full Text:

PDF

References


Cai W, Yan Z, Rascoe J and Stulberg MJ. 2018. Draft Whole-Genome Sequence of “ Candidatus Liberibacter asiaticus” Strain TX1712 from Citrus in Texas . Genome Announcements 6(25):1–2. https://doi.org/10.1128/genomea.00554-18.

Camerota C, Raddadi N, Pizzinat A, Gonella E, Crotti E, Tedeschi R, Mozes-Daube N, Ember I, Acs Z, Kolber M, Zchori-Fein E, Daffonchio D and Alma A. 2012. Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. Phytoparasitica 40:213–221. https://doi.org/10.1007/s12600-012-0225-5.

do Carmo Teixeira D, Saillard C, Eveillard S, Danet JL, da Costa PI, Ayres AJ and Bové J. 2005. “Candidatus Liberibacter americanus”, associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. International Journal of Systematic and Evolutionary Microbiology 55(5):1857–1862. https://doi.org/10.1099/ijs.0.63677-0.

Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y and Gottwald T. 2009. Complete Genome Sequence of Citrus Huanglongbing Bacterium, ‘Candidatus Liberibacter asiaticus’ Obtained Through Metagenomics. Molecular Plant-Microbe Interactions 22:1011–1020. https://doi.org/10.1094/MPMI-22-8-1011

Emelyanov VV. 2007. Suggested mitochondrial ancestry of nonmitochondrial ATP/ADP carrier. Molecular Biology 41(1):52–62. https://doi.org/10.1134/s0026893307010086.

Fagen JR, Leonard MT, McCullough CM, Edirisinghe JN, Henry CS, Davis MJ and Triplett EW. 2014. Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of Liberibacter. PLoS One 9:1–11. https://doi.org/10.1371/journal.pone.0084469.

Flores-Sánchez JL, Mora-Aguilera G, Loeza-Kuk E, López-Arroyo JI, Domínguez-Monge S, Acevedo-Sánchez G y Robles-García P. 2015. Pérdidas en Producción inducidas por Candidatus Liberibacter asiaticus en Limón Persa, en Yucatán México. Revista Mexicana de Fitopatología 33:195–210. https://www.redalyc.org/articulo.oa?id=61242145005.

Goloboff P, Farris JS and Nixon KC. 2008. TNT, a free programm for phylogenetic analysis. Cladistics 24:774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98. http://jwbrown.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf

Lin H, Han CS, Liu B, Lou B, Bai X, Deng C, Civerolo EL and Gupta G. 2013. Complete Genome Sequence of a Chinese Strain of “Candidatus Liberibacter asiaticus”. Genome Announcements 1(2):e00184-13. https://doi.org/10.1128/genomeA.00184-13.

Lin H, Pietersen G, Han C, Read DR, Lou B, Gupta G and Civerolo E. 2006. Complete genome sequence of “Candidatus Liberibacter africanus,” a bacterium associated with citrus Huanglongbing. Genome Announcements 3:3–4. https://doi.org/10.13406/j.cnki.cyxb.2006.06.005.

Liu Y and Bahar I. 2012. Sequence evolution correlates with structural dynamics. Molecular Biology and Evolution 29:2253–2263. https://doi.org/10.1093/molbev/mss097.

Manjunath KL, Halbert SE, Ramadugu C, Webb S and Lee RF. 2008. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida. Phytopathology 98:387–396. https://doi.org/10.1094/PHYTO-98-4-0387

Merfa M V, Pérez-López E, Naranjo E, Jain M, Gabriel DW and De La Fuente L. 2019. Progress and obstacles in culturing ‘Candidatus Liberibacter asiaticus’, the bacterium associated with Huanglongbing. Phytopathology 109(7): 1092-1101 https://doi.org/10.1094/PHYTO-02-19-0051-RVW

Najm N-A, Silaghi C, Bell-Sakyi L, Pfister K and Passos LMF. 2012. Detection of bacteria related to Candidatus Midichloria mitochondrii in tick cell lines. Parasitology Research 110:437–442. https://doi.org/10.1007/s00436-011-2509-y.

Pelz-Stelinski KS and Killiny N. 2016. Better Together: Association with “Candidatus Liberibacter Asiaticus” increases the reproductive fitness of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Annals ofthe Entomological Society of America 109(3):371–376. https://doi.org/10.1093/aesa/saw007

Pitino M, Armstrong CM and Duan Y. 2017. Molecular mechanisms behind the accumulation of ATP and H2O2 in citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection. Horticulture Research 4: 17040. https://doi.org/10.1038/hortres.2017.40

Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, Mandrioli M, Attilio Bianco P, Daffonchio D and Alma A. 2011. ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology 13:414–426. https://doi.org/10.1111/j.1462-2920.2010.02347.x

Roberts R and Pietersen G. 2017. A novel subspecies of ‘Candidatus Liberibacter africanus’ found on native Teclea gerrardii (Family: Rutaceae) from South Africa. Antonie Van Leeuwenhoek 110:437–444. https://doi.org/10.1007/s10482-016-0799-x

Sassera D, Beninati T, Bandi C, Bouman EAP, Sacchi L, Fabbi M and Lo N. 2006. “Candidatus Midichloria mitochondrii”, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology 56:2535–2540. https://doi.org/10.1099/ijs.0.64386-0.

Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, Wagner M and Horn M. 2004. ATP/ADP Translocases: A common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. Journal of Bacteriology 186:683–691. https://doi.org/10.1128/JB.186.3.683-691.2004.

Teixeira DC, Saillard C, Couture C, Martins EC, Wulff NA, Eveillard-Jagoueix S, Yamamoto PT, Ayres AJ and Bové JM. 2008. Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbing disease of citrus in São Paulo State, Brasil, in leaves of an affected sweet orange tree as determined by PCR. Molecular and Cellular Probes 22:139–150. https://doi.org/10.1016/j.mcp.2007.12.006

Trentmann O, Horn M, van Scheltinga ACT, Neuhaus HE and Haferkamp I. 2007. Enlightening energy parasitism by analysis of an ATP/ADP transporter from chlamydiae. PLOS Biology 5:e231. https://doi.org/10.1371/journal.pbio.0050231.

Vahling CM, Duan Y and Lin H. 2010. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus.” Journal of Bacteriology 192(3):834–840. https://doi.org/10.1128/JB.01279-09.

Waterhouse AM, Procter JB, Martin DMA, Clamp M and Barton GJ. 2009. Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033.

Wulff N a, Zhang S, Setubal JC, Almeida NF, Martins EC, Harakava R, Kumar D, Rangel LT, Foissac X, Bové JM and Gabriel DW. 2014. The complete genome sequence of “Candidatus Liberibacter americanus”, associated with Citrus huanglongbing. Molecular plant-microbe Interactions 27(2):163–176. https://doi.org/10.1094/MPMI-09-13-0292-R.

Zheng Z, Deng X and Chen J. 2014. Whole-Genome Sequence of “Candidatus Liberibacter asiaticus” from Guangdong, China. Genome Announcements 2:e00273-14. https://doi.org/10.1128/genomeA.00273-14.

Zheng Z, Sun X, Deng X and Chen J. 2015. Whole-Genome sequence of “Candidatus Liberibacter asiaticus” from a Huanglongbing-Affected citrus tree in central Florida. Genome Announcements 3:e00169-15. https://doi.org/10.1128/genomeA.00169-15.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2009-1

Refbacks

  • There are currently no refbacks.