Effect of biocontrol and promotion of peanut growth by inoculating Trichoderma harzianum and Bacillus subtilis under controlled conditions and field

Camila Illa, Alejandro Andrés Pérez, Matias Torassa, Maria Alejandra Pérez

Abstract


Peanut production in Argentina suffers severe fluctuations, mainly due to fungal diseases and its control with chemical treatments is inefficient, with biological control being a management alternative that would contribute to the sustainability of the production system. This research aimed to evaluate the effect of biocontrol and growth promotion on peanuts by inoculating Trichoderma harzianum CT306 and Bacillus subtilis CT104 under controlled conditions and field. The tests were carried out in pots with controlled conditions (25 °C, 12 hours light) with peanut seeds Var. Granoleic infected with Aspergillus flavus, Fusarium sp., Sclerotinia minor and Thecaphora frezzi. In plants grown to 60 DDS, absence of A. flavus and Fusarium sp. when applying biological alone and in combination; while the joint application with T. harzianum and Bacillus caused the absence of S. minor and low incidence of T. frezzi. In field evaluations, biological treatments increase the emergency percentage (37%) and at the end of the cycle there was a 14% reduction in the incidence of T. frezzi, an increase in biomass (27%), yield (46%) and grain size (34%) with respect to the check, without affecting the degree of maturity reached.

Keywords


Arachis hypogaea; yield; Biological Control Agents

Full Text:

PDF

References


Andrés JA, Pastor NA, Ganuza M, Rovera M, Reynoso MM and Torres A. 2016. Biopesticides: An Eco-Friendly Approach for the Control of Soil borne Pathogens in Peanut. In: Singh et al. (Eds.) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, India. https:// doi.org/10.1007/978-81-322-2647-5_9

Ankati S, Swaroopa Rani T and Podile A. 2018. Partnertriggered proteome changes in the cell wall of Bacillus sonorensis and roots of groundnut benefit each other. Microbiological Research. https://doi.org/10.1016/j.micres.2018.10.003

Astiz GMM y Wojszko A. 2011. Evaluación in vitro de fungicidas curasemillas para el control químico del carbón de maní (Thecaphora frezii). XXV Jornada Nacional de Maní, General Cabrera, Córdoba, Argentina. http://www. ciacabrera.com.ar/docs/JORNADA%2026/Microsoft%20 Word%20-%2021Astiz%20-%20Wojsko%20-%20 Nova%20-%20Poster.pdf (consulta, mayo 2019).

Bashan Y, De-Bashan LE, Prabhu SR and Hernandez JP. 2013. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi. org/10.1007/s11104-013-1956-x

Buffoni A y Marraro F. 2010. Evaluación de fungicidas curasemillas y su efecto en el carbón del maní causado por Thecaphora frezii. XXVI Jornada Nacional de Maní, General Cabrera, Córdoba, Argentina. http://www.ciacabrera.com. ar/docs/JORNADA%2025/4-MARR~1.PDF (consulta, mayo 2019).

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M y Robledo CW. 2018. InfoStat versión 2018. [Software de cómputo]. Córdoba, Argentina, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar/

Ganuza M, Pastor N, Erazo J, Andrés J, Reynoso MM, Rovera M and Torres AM. 2017. Efficacy of the biocontrol agent Trichoderma harzianum ITEM 3636 against peanuts mut, anemergent disease caused by Thecaphora frezii. Eur J Plant Pathology. https://doi.org/10.1007/s10658-0171360-0

Harman GE, Howell CR, Viterbo A, Chet I and Lorito M. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2, 43. https:// doi.org/10.1038/nrmicro797

Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87: 4-10. http://dx.doi.org/10.1094/PDIS.2003.87.1.4

Illa C, Cuggino S, Kopp S, Sebastián y Pérez M, Ulliarte A y Pérez MA. 2013. Efecto de la aplicación combinada de B. subtillis más fungicidas sobre la calidad fisiosanitaria de semillas de maní y el crecimiento posterior de las plantas. XXVIII Jornada Nacional de Maní, General Cabrera, Córdoba, Argentina. Recuperado de: http://www.ciacabrera. com.ar/docs/JORNADA%2028/4-%20ILLA.pdf (consulta, junio 2019)

Illa C, Kopp S, Olivo A y Pérez MA. 2016. Efecto de tratamientos profesionales de fungicidas, polímeros, inoculantes y Bacillus subtilis aplicados en semillas de maní sobre el comportamiento a campo desde emergencia hasta cosecha. Jornada Nacional de Maní. Recuperado de: http://www. ciacabrera.com.ar/docs/JORNADA.

INTA. 2018. La enfermedad del carbón amenaza al maní cordobés http://intainforma.inta.gov.ar/?p=42494 (consulta, mayo 2019)

Marani-Barbosa R, Faria dos Santos J, Mendonça Lopes M, Cássia Panizzi R and Daiton Vieira R. 2013. Chemical control of pathogens and the physiological performance of peanut seeds. Journal of Food, Agriculture & Environment 11(2): 322-326. https://www.researchgate.net/publication/242149973_Chemical_control_of_pathogens_and_ the_physiological_performance_of_peanut_seeds (consulta, mayo 2019)

March GJ y Marinelli AD. 2005. Enfermedades del Maní en Argentina. 1 ed. Fundación Maní Argentino.142 pp.

Paredes JA, Cazón LI, Osella A, Peralta V, Alcalde M, Kearney MI, Zuza MS, Rago AM y Oddino C. 2017. Relevamiento regional del carbón del maní y estimaciones de pérdidas producidas por la enfermedad. XXXII Jornada Nacional de Mani. Gral Cabrera ciacabrera.com.ar/docs/ JORNADA%2026/Microsoft%20Word%20-%2021Astiz%20-%20Wojsko%20-%20Nova%20-%20Poster.pdf (consulta, mayo 2019

Pérez MA, Cavallo AR y Pedelini R. 2004. Indicadores de madurez en frutos de maní (Arachis hypogaea L.) cv. Florman, para la producción de semillas en la provincia de Córdoba. Agriscientia 21 (2):77-83. file:///C:/Users/ mani/Downloads/2670-Texto%20del%20art%C3%ADcu lo-8820-1-10-20120823.pdf (consulta, junio 2019)

Pérez, A and Arguello JA. 1995. Deterioration in peanut (Arachis hypogaea L.) seeds under natural and accelerated aging. Seed Science & Technology 23: 439-445

Prasad, PVV, Kakani, VG and Upadhyaya HD. 2009. Growth and production of groundnuts. In W. H. Verheye (Ed.), Soils, Plant Growth and Crop Production pp. 138-167. Oxford: Encyclopedia of Life Support Systems. Eolss Publishers.

Pretali L, Bernardo L, Butterfield TS, Trevisan M. and Lucini L. 2016. Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 130: 56-63. http://dx.doi.org/10.1016/j.phytochem.2016.04.002

Rojo FG, Reynoso MM, Ferez M, Chulze SN and Torres AM. 2007. Biological control by Trichoderma species of Fusarium solanica using peanut brown root rot under field conditions. Crop Protection 26: 549-555. http://dx.doi. org/10.1016/j.cropro.2006.05.006

Rosso M, Bressano M, De Blas F, Buteler M, Soave J, Soave S, Giordano F, Giuggia J, Lupano G, Moresi A, Seijo G y Oddino C. 2018. Comportamiento de una población de lineas recombinantes endocriadas (RILS) frente a tizón del mani causado por Sclerotinia minor. XXXIII Jornada del Maní. http://ciacabrera.com.ar/docs/JORNADA%20 33/18.-%20COMPORTAMIENTO%20DE%20UNA%20 POBLACI%C3%93N%20DE%20LINEAS%20RECOMBINANTES%20ENDOCRIADAS%20(RILS)%20 FRENTE%20A%20TIZ%C3%93N%20DEL%20 MANI%20CAUSADO%20POR%20Sclerotinia%20minor.pdf (consulta, junio 2019)

Sharma PK and Gothalwal R. 2017. Trichoderma: A potent fungus as biological control agent. Pp:113-125. In: Singh J., Seneviratne G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://dx.doi.org/10.1007/978-3-31949724-2_6

Sherathia D, Dey R, Thomas M, Dalsania T, Savsani K and Pal KK. 2016. Biochemical and molecular characterization of DAPG-producing plant growth- promoting rhizobacteria (PGPR) of groundnut (Arachis hypogaea L.). Legume Research 39 (4): 614-622. https://doi.org/10.18805/ lr.v0iOF.9389

Shifa H, Tasneem S, Gopalakrishnan C and Velazhahan R. 2016. Biological control of pre-harvest aflatoxin contamination in groundnut (Arachis hypogaea L.) with Bacillus subtilis G1, Archives of Phytopathology and Plant Protection. https://doi.org/10.1080/03235408.2016.1160642

Singh UB, Malvivya D, Singh S, Imran M, Pa- thak N, Alam M, Rai JP, Singh RK, Sarma BK, Sharma PK and Sharma AK. 2016. Compatible salt-tolerant rhizosphere microbemediated induction of phenylpropanoid cascade and induced systemic responses against Bipolaris sorokiniana (Sacc.) Shoemaker causing spot blotch disease in wheat (Triticuma estivum L.). Applied Soil Ecology 108: 300306. http://dx.doi.org/10.1016/j.aps- oil.2016.09.014

Tejera-Hernández B, Rojas-Badía MM y Heydrich-Pérez M. 2011. Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control de hongos to patógenos. Revista CENIC Ciencias Biológicas 42: 131138. http://www.redalyc.org/ pdf/1812/181222321004.pdf (consulta, mayo 2019)

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA and Estrada-Alvarado MI. 2017. The genus Bacillus as a biological control agent and it simplications in the agricultural biosecurity. Revista Mexicana de Fitopatología 36(1): 95-130. https://doi.org/10.18781/R.MEX.FIT.1706-5

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL and Lorito M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathology 7: 80-86. http:// dx.doi.org/10.1016/j.pmpp.2008.05.005

Woo SL, Scala F, Ruocco M and Lorito M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96: 181-185. http://dx.doi.org/10.1094/PHYTO-96-0181




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1910-6

Refbacks

  • There are currently no refbacks.