Early morphological development of sclerotia of Sclerotinia sclerotiorum in the presence of potassium bicarbonate

Claudia Ordóñez-Valencia, Ronald Ferrera-Cerrato, Alejandro Alarcón, Laura V. Hernández-Cuevas, John Larsen

Abstract


Sclerotinia sclerotiorum is a pathogen of great economic importance that causes significant losses in various crops. Control of the pathogen is difficult since this fungus forms resistant sclerotia that can survive in the soil for many years. This study evaluated the morphological development of S. sclerotiorum sclerotium primordia by using the Riddell technique, and different concentrations of potassium bicarbonate (KHCO3). The formation of primordia began from hyphae. However, as the concentration of KHCO3 increased, morphological changes were observed in the initiation phase of the sclerotia, as well as in the inhibition of their development when using a 50 mM concentration of KHCO3. This chemical compound modifies the morphology and inhibits the development of sclerotia in their initial stages; hence it may offer potential as an alternative to synthetic fungicides for the control of plant diseases caused by S. sclerotiorum.


Keywords


antifungal agent; morphogenesis; inhibition; microscopy

Full Text:

PDF (Español)

References


Aharoni Y, Fallik E, Copel A, Gil M, Grinberg S, and Klein JD. 1997. Sodium bicarbonate reduces postharvest decay development on melons. Postharvest Biology and Technology 10:201-206. https://doi.org/10.1016/S0925-5214(97)01412-9

Alexander M. 1977. Introduction to soil microbiology, 2nd edition. New York, John Wiley and Sons.

Arai H, Berlett BS, Chock PB, and Stadtman ER. 2005. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. Proceedings of the National Academy of Sciences 102:10472-10477. https://doi.org/10.1073/pnas.0504685102

Arslan U. 2015. Evaluation of antifungal activity of mono and dipotassium phosphates against phytopathogenic fungi. Fresenius Environmental Bulletin 24:810-816. Disponible en línea: https://www.researchgate.net/publication/281927544_Evaluation_of_antifungal_activity_of_mono_and_dipotassium_phosphates_against_phytopathogenic_fungi

ArslanU, Ilhan K and Karabulut OA. 2006. Evaluation of food additives and low-toxicity compounds for the control of bean rust and wheat leaf rust. Journal of Phytopathology 154:534-541. https://doi.org/10.1111/j.1439-0434.2006.01144.x

Avis TJ. 2007. Antifungal compounds that target fungal membranes: applications in plant disease control. Canadian Journal of Plant Pathology 29:323-329. https://doi.org/10.1080/07060660709507478

Bae YS and Knudsen GR. 2007. Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Applied Soil Ecology 35:21-24. https://doi.org/10.1016/j.apsoil.2006.05.014

Bardin SD and Huang HC. 2001. Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology 23:88-98. https://doi.org/10.1080/07060660109506914

Bolton MD, Thomma BPHJ and Nelson BD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7:1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x

Bombelli EC y Wright ER. 2006. Efecto del bicarbonato de potasio sobre la calidad del tomate y acción sobre Botrytis cinerea en postcosecha. Ciencia e Investigación Agraria 33:197-203. Disponible en línea: https://www.researchgate.net/publication/28138683_Efecto_del_bicarbonato_de_potasio_sobre_la_calidad_del_tomate_y_accion_sobre_Botrytis_cinerea_en_poscosecha

Calvo AM and Cary JW. 2015. Association of fungal secondary metabolism and sclerotial biology. Frontiers in Microbiology 6:1-16. https://doi.org/10.3389/fmicb.2015.00062

Chen C, Harel A, Gorovoits R, Yarden O and Dickman MB. 2004. MAPK Regulation of sclerotial development in Sclerotinia sclerotiorum in linked with pH and cAMP sensing. Molecular Plant-Microbe Interactions 17:404-413. https://doi.org/10.1094/MPMI.2004.17.4.404

Fallik E, Ziv O, Grinberg S, Alkalai S and Klein JD. 1997. Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce the development of postharvest fruit rotting. Phytoparasitica 25:41-43. https://doi.org/10.1007/BF02981478

Fernando WGD, Nakkeeran S and Zhang Y. 2004. Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Pp: 329-347. In: Pandalai SG (ed). Recent Research Developments in Environmental Biology. Research Signpost. India. Disponible en línea: https://www.researchgate.net/publication/238111476_Ecofriendly_methods_in_combating_Sclerotinia_sclerotiorum_Lib_de_Bary

Georgiou DC, Patsoukis ?, Papapostolou ? and Zervoudakis G. 2006. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology 46:691-712. https://doi.org/10.1093/icb/icj034

Giri B, Giang PH, Kumari R, Prasad R and Varma A. 2005. Microbial diversity in soils. Pp: 19-55. In: Buscot F and Varma A. (eds.). Microorganisms in soils: roles in genesis and functions. Springer-Verlag Berlin Heidelberg. 422p. DOI: 10.1007/b137872

Hansberg W and Aguirre J. 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology 142:201-221. https://doi.org/10.1016/S0022-5193(05)80222-X

Harel A, Gorovits R and Yarden O. 2005. Changes in protein kinase A activity accompany sclerotial development in Sclerotinia sclerotiorum. Phytopathology 95:397-404. https://doi.org/10.1094/PHYTO-95-0397

Hegedus DD and Rimmer SR. 2005. Sclerotinia sclerotiorum: When “to be or not to be” a pathogen?. FEMS Microbiology Letters 251:177-184. https://doi.org/10.1016/j.femsle.2005.07.040

Humpherson-Jones FM and Cooke RC. 1977. Morphogenesis in sclerotium-forming fungi. II. Rhythmic production of sclerotia by Sclerotinia sclerotiorum (Lib.) de Bary. New Phytology 78:181-187. https://doi.org/10.1111/j.1469-8137.1977.tb01556.x

Igwegbe ECK, King V and Salary J. 1977. 6-methylpurine-induced inhibition of sclerotia morphogenesis in Sclerotium rolfsii and its reversal by adenosine. Mycopathologia 62:153-159. https://doi.org/10.1007/BF00444108

Jabnoun-Khiareddine H, Abdallah R, El-Mohamedy R, Abdel-Kareem F, Gueddes-Chahed M, Hajlaoui A and Daami-Remadi M. 2016. Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. Journal of Microbial and Biochemical Technology 8:45-55. http://dx.doi.org/10.4172/1948-5948.1000261

Karabulut OA, Smilanick JL, Mlikota F, Mansour M and Droby S. 2003. Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Disease 87:1384-1389. https://doi.org/10.1094/PDIS.2003.87.11.1384

Knorev EA, Zhang H, Joseph J, Kennedy MC and Kalyanaraman B. 2000. Bicarbonate exacerbates oxidative injury induced by antitumor antibiotic doxorubicin in cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology 279:2424-2430. https://doi.org/10.1152/ajpheart.2000.279.5.H2424

Le Tourneau D. 1979. Morphology, cytology and physiology of Sclerotinia species in culture. Phytopathology 69:887-890. http://dx.doi.org/10.1094/Phyto-69-887

Lowry R. 2001-2018. VassarStats. A Web Site for Statistical Computation. Disponible en línea: http://vassarstats.net/csfit.html

Lushchak OV, Bayliak MM, Korobova OV, Levine RL and Lushchak VI. 2009. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae. Redox Report 14:214-220. https://doi.org/10.1179/135100009X12525712409454

Marcet-Houben M and Gabaldón T. 2011. Evolution of fungi and their respiratory metabolism. Pp: 257-272. In: Pontarotti P (ed). Evolutionary Biology-Concepts, Biodiversity, Macroevolution and Genome Evolution. Heidelberg: Springer-Verlag, Berlin. 345p. https://doi.org/10.1007/978-3-642-20763-1_15

Mónaco CI, Rollán MC y Nico AI. 1998. Efecto de micoparásitos sobre la capacidad reproductiva de Sclerotinia sclerotiorum. Revista Iberoamericana de Micología 15:81-84. Disponible en línea: https://www.researchgate.net/publication/237685229_Efecto_de_micoparasitos_sobre_la_capacidad_reproductiva_de_Sclerotinia_sclerotiorum

Olivier C, Halseth ED and Mizubuti ESGm, Loria R. 1998. Postharvest application of organic and inorganic salts for suppression of silver scurf on potato tubers. Plant Disease 82:213-217. https://doi.org/10.1094/PDIS.1998.82.2.213

Ordóñez-Valencia C, Alarcón A, Ferrera-Cerrato R and Hernández-Cuevas LV. 2009. In vitro antifungal effects of potassium bicarbonate on Trichoderma sp. and Sclerotinia sclerotiorum. Mycoscience 50:380-387. https://doi.org/10.1007/S10267-009-0495-Z

Palmer CL, Horst RK and Langhans RW. 1997. Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Disease 81:1432-1438. https://doi.org/10.1094/PDIS.1997.81.12.1432

Punja ZK and Damiani A. 1996. Comparative growth, morphology and physiology of three Sclerotium species. Mycologia 88:694-706. http://dx.doi.org/10.2307/3760963

Riddell RW. 1950. Permanent stained mycological preparation obtained by slide culture. Mycologia 42:265-270. http://dx.doi.org/10.2307/3755439

Rollins JA and Dickman MB. 2001. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Applied and Environmental Microbiology 67:75-81. http://dx.doi.org/10.1128/AEM.67.1.75-81.2001

Saharan GS and Mehta N. 2008. Reproduction and reproductive structures. Pp: 113-161. In: Saharan GS and Mehta N (eds). Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer. India. 418p. https://doi.org/10.1007/978-1-4020-8408-9_8

Sentandreu R, Mormeneo S and Ruiz-Herrera J. 1994. Biogenesis of the fungal cell wall. Pp: 111-124. In: Wessels JGH, Meinhardt F (eds). The Mycota I Growth, differentiation and sexuality. Springer-Verlag. Berlin Heidelberg. 521p. https://doi.org/10.1007/978-3-662-11908-2_6

Sideri M and Georgiou DC. 2000. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia 92:1033-1042. http://dx.doi.org/10.2307/3761468

Smilanick JL, Margosan DA, Mlikota F, Usall J and Michael IF. 1999. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Disease 83:139-145. https://doi.org/10.1094/PDIS.1999.83.2.139

Smith ME, Henkel TW and Rollins JA. 2015. How many fungi make sclerotia? Fungal Ecology 13:211-220. https://doi.org/10.1016/j.funeco.2014.08.010

Smits GB and Noguera R. 1988. Ontogeny and morphogenesis of sclerotia and pycnidia of Macrophomina phaseolina. Agronomia Tropical Maracay 38:69-78.

Türkkan M, Özcan M and Erper I. 2017. Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the causal agent of grey mould of kiwifruit. Akademik Ziraat Dergisi 6:107-114. http://dx.doi.org/10.29278/azd.371066

Townsend BB and Willetts HJ. 1954. The development of sclerotia of certain fungi. Transactions of the British Mycological Society 37:213-221. https://doi.org/10.1016/S0007-1536(54)80003-9




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1803-4

Refbacks

  • There are currently no refbacks.