Chitosan and Pseudomonas fluorescens extracts for Alternaria alternata control in tomato (Solanum lycopersicum)

Víctor Manuel Rodríguez-Romero, Ramón Villanueva-Arce, Ariadna Berenice Trejo-Raya, Silvia Bautista-Baños

Abstract


Alternaria alternata is a fungus that causes damage to the tomato crop, it is characterized by producing black spots and wilting in plants and fruits; synthetic fungicides are the main tools to control this fungus. The objective of this study was to evaluate the effect of the application of mixtures of chitosan and extracts of Pseudomonas fluorescens in the control in vitro of A. alternata on mycelium and conidia, as well as the incidence and severity in greenhouse tomato plants. The use of the mixture of chitosan 1.5% (w/v) + extract of P. fluorescens 50% (v/v) resulted in 60 and 100% of in vitro inhibition of mycelial growth and conidia germination of A. alternata respectively. In greenhouse, the plants were inoculated with A. alternata, later they were sprayed with the mixture of chitosan 1.5% (w/v) + extract of P. fluorescens 50% (v/v) every 7 days until flowering. The incidence was 100%, while the severity was 51.8 and 38.9% for 7 days and 16.9 and 16.2% for 60 days, respectively. The mixture used is an option for the control of A. alternata.

Keywords


antifungal activity; biological control; incidence; severity

Full Text:

PDF (Español)

References


Agrios, GN. 1997. Plant Pathology. 4th Edition. Academic Press. San Diego, California, USA. 300-303.

https://doi. org/10.1017/S0014479700015507

Alemu F, and Alemu T. 2013. Antifungal activity of secondary metabolites of Pseudomonas fluorescens isolates as a biocontrol agent of chocolate spot disease (Botrytis fabae) of faba bean in Ethiopia. African Journal of Microbiology Research. 7: 5364-5373. https://doi.org/10.5897/AJMR2013.5899

Bakeer AR, El-Mohamedy RSR, Saied NM, Abd-El-Kareem. 2016. Field suppression of Fusarium soil borne diseases of tomato plants by the combined applications of bio agents and chitosan. 3: 1-10.

https://doi. org/10.9734/bbj/2016/24985

Bautista-Baños S, Hernández-López M, Bosquez-Molina E, and Wilson CL. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection 22: 1087–1092. https://doi.org/10.1016/S02612194(03)00117-0

Bautista-Baños S, Barrera NL, Hernández-López M, and Rodríguez-González F. 2016. Morphological and ultrastructural modifications of chitosan-treated fungal phytopathogens (251-275). In: Bautista-Baños S, Romanazzi G. and Jiménez-Aparicio A. (Eds.). Chitosan in the preservation of agricultural commodities. Academic Press/Elsevier USA 394p. https://doi.org/10.1016/c2014-0-03033-x

Chin A Woeng TFC, Bloemberg GV and Lugtenberg BJJ. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist. 157: 503–523. https:// doi.org/10.1046/j.1469-8137.2003.00686.x

Couillerot O, Prigent-Combaret C, Caballero-Mellado J and Moënne-Loccoz. 2008. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology. 48: 505-512. https://doi.org/10.1111/j.1472765x.2009.02566.x

Daane LL, Molina JA, Berry EC and Sadowsky MJ. 1996. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Applied Environmental Microbiology. 62: 515–521. https://www. ncbi.nlm.nih.gov/pubmed/8593052

Dean R, Van Kan JAL, Petrorius ZA, Hammond KE, Di Pietro AD, Spanu PD, Rudd JJ, Dickman M. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. 13: 414-430. https://doi.org/10.1111/ j.1364-3703.2011.00783.x

De Oliveira ENJ. 2016. Fungal growth control by chitosan and derivates (62-76). In: Sultan S (Eds). Fungal Pathogenicity. IntechOpen. USA. https://doi.org/10.5772/63308

Droby, S. 2006. Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae. 709:45–51. https://doi.org/10.17660/actahortic.2006.709.5

FAO (Food and Agriculture Organization of the United Nations). 2016. FAOSTAT Statistics Database. www.fao.org/ faostat (consulta noviembre 2018).

Feliziani E, Landi L, and Romanazzi G. 2015. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers. 132: 111–117. https://doi. org/10.1016/j.carbpol.2015.05.078

Gerhardson B. 2002. Biological substitutes for pesticides. Trends in Biotechnology 20: 338-343. https://doi. org/10.1016/s0167-7799(02)02021-8

Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. The American Phytopathological Society. 91: 1024:1031. https://doi.org/10.1094/ phyto.2001.91.7.621

Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Biological Control. 92: 976:985. https://doi. org/10.1094/phyto.2002.92.9.976

Hass D and Defago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology. 3: 307-319. https://doi.org/10.1038/nrmicro1129.

Korsten, L, and Jager EE. 1995. Mode of action of Bacillus subtilis for control of avocado postharvest pathogens. SAAGA Yearbook 18: 124-130. http://agris.fao.org/agrissearch/search.do?recordID=ZA9600511

Kwak Y, Park GS, Shin, JH. 2016. High quality draft genome sequence of the type strain of Pseudomonas lutea OK2T, a phosphate-solubilizing rhizospheric bacterium. Standards in Genomic Sciences. 11: 1-10. https://doi.org/10.1186/ s40793-016-0173-7

Liu J, Tian S, Meng X and Xu Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology. 44: 300–306. https://doi.org/10.1016/j.postharvbio.2006.12.019

Logrieco A, Moretti A and Solfrizzo M. 2009. Alternaria Toxins and plant diseases: an overview of of origin, occurrence and risks. World Mycotoxin Journal. 2: 129140. https://doi.org/10.3920/wmj2009.1145

Maqbool M, Ali A, Ramachandran S, Smith DR and Alderson PG. 2010. Control of postharvest anthracnose of banana using a new edible composite coating. Crop Protection. 29:1136 – 1141. https://doi.org/10.1016/j.cropro.2010.06.005

Mark GL, Morrissey PJ, Higgins P and O´Hara F. 2006. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. Federation of European Microbiological Societies. 56:167177. https://doi.org/10.1111/j.1574-6941.2006.00056.x

Meng X, Li B, Liu J and Tian S. 2008. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry. 106: 501–508. https://doi.org/10.1016/j. foodchem.2007.06.012

Miranda CS 2016. Application of Chitosan in Fresh and Minimally Processed Fruits and Vegetables. In: Bautista-Baños S, Romanazzi G. and Jiménez-Aparicio A. (Eds.). Chitosan in the preservation of agricultural commodities. Academic Press/Elsevier USA 394p. https://doi.org/10.1016/ c2014-0-03033-x

Mishra S and Arora NK. 2012. Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4- diacetylphloroglucinol by qRT-PCR. Biological Control 61: 32–39. https://doi.org/10.1016/j.biocontrol.2011.12.011.

Narayasamy P. 2003. Development of formulations and commercialization of biological products. In: Hokkanen MTH (Eds). Biological Management of Diseases. Springer USA 382p. https://doi.org/10.1007/978-94-007-6377-7_2

NCBI (National Center for Biotechnology Information). 2018. Basic Local Alignment Search Tool. https://blast.ncbi.nlm. nih.gov/Blast.cgi (consulta agosto 2018).

Nwosu V. 2001. Antibiotic resistance with particular reference to soil microorganisms. Research in Microbiology. 152:421-430. https://doi.org/10.1016/s09232508(01)01215-3

Orberá TM, Serrat MJ, Ortega E. 2014. Potential applications of Bacillus subtilis strain SR/B-16 for the control of phytopathogenic fungi in economically relevant crops. Biotecnología. Aplicada. 31:13-17. http://scielo.sld.cu/pdf/bta/ v31n1/bta02114.pdf

Pal KK, and McSpadden BG. 2006. Biological Control of Plant Pathogens. The Plant Health Instructor. 1-25p. https://doi. org/10.1094/PHI-A-2006-1117-02

Palma GJ, H BJ, Salina J and Lopez LLV. 2008. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal Applied Microbiology. 104: 541-553. https://doi.org/10.1111/j.13652672.2007.03567.x

Petriacq P, López A and Luna E. 2018. Fruit decay to diseases: Can Induced Resistance and Priming Gelp?. Plants. 7: 1-16. https://doi.org/10.3390/plants7040077

Postma J, Stevens L, Wiegers G, Davelaar E, and Nijhuis E. 2009. Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biological Control 48: 301–309. https://doi.org/10.1016/j.biocontrol.2008.11.006

Prapagdee B, Kotchadat K Kumsopa A and Visarathanonth N. 2007. The role of chitosan in protection of soybean from sudden death syndrome caused by Fusarium solani f. sp. glycines. Bioresource Technology. 98:1353-1358. https:// doi.org/10.1016/j.biortech.2006.05.029.

Premachandra D, Hudek L and Brau L. 2016. Bacterial modes of action for enhancing of plant growth. Journal of Biotechnology and Biomaterials 6: 1-8. https://doi.org/10.1016/j. biortech.2006.05.029

Ramos-García M, Bosquez-Molina E, Hernández-Romano J, Zavala-Padilla G, Terrés-Rojas E, Alia-Tejacal I, BarreraNecha L, Hernández-Lopez M, and Bautista-Baños S. 2012. Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5a in fresh tomatoes. Crop Protection. 38:1-6. https://doi.org/10.1016/j.cropro.2012.02.016

Redondo-Nieto M, Barret M, Morrisey JP, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Giddens SR, Coppoolse ER, Muriel C, Stiekeme WJ, Rainey PB, Dowling DO, Fergal M, and Rivilla MR. 2012. Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113. Journal of Bacteriology 1273–1274. https://doi.org/10.1128/JB.06601-11.

Romanazzi G, Karabulut OA and Smilanick JL. 2007. Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biology and Technology 45: 134-140. https://doi.org/10.1016/j.postharvbio.2007.01.004

Saavedra GM, Figueroa NE, Poblete LA, Cherian S and Figueroa CR. 2016. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chemistry 190: 448–453. https://doi.org/10.1016/j.foodchem.2015.05.107

Sánchez-Bayo F and Tennekes HA. 2015. Environmental Risk Assessment of Agrochemicals - A Critical Appraisal of Current Approaches. Toxicity and Hazard of Agrochemicals. Chapter 1: 2-37. https://doi.org/10.5772/60739

Sánchez Dominguez D, Ríos MY, Castillo-Ocampo P, Zavala-Padilla G, Ramos GM, and Bautista BS. 2011. Cytological and biochemical changes induced by chitosan in the pathosystem Alternaria alternata–tomato. Pesticide Biochemistry and Physiology 99:250–255. https://doi. org/10.1016/j.pestbp.2011.01.003

Schaad NW. 1988. Identification schemes. In: N.W. Schaad (Ed.). Laboratory guide of identification of plant pathogenic bacteria. 2nd ed. American Phytopathological Society. Press,USA. 1-15. https://doi.org/10.1046/j.13653059.2001.00635.x

Strange NR, and Scott PR. 2005. A threat to global food security. Annual Review of Phytopathology. 43:83-116. https:// doi.org/10.1146/annurev.phyto.43.113004.133839

Terna TP, Okoro JK, Bem AA, Okogbaa JI and Waya JI. 2016. Incidence and severity of diseases associated with rain-fed tomatoes in Benue State, Nigeria. 9: 59-65. https://doi. org/10.1016/j.sajb.2017.01.184

Ting Y, Chen Y, Fangxia C, Kuang S, Tao Z, Mahbuba Z, Ornisa A, Sheng Y, and Xiaodong Z. 2012. Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biology and Technology 69: 49-53.

https://doi. org/10.1016/j.postharvbio.2012.02.007

Trigos A, Ramírez K, y Salinas A. 2008. Presencia de hongos fitopatógenos en frutas y hortalizas y su relación en la seguridad alimentaria. Revista Mexicana de Micología 28:125-129. https://www.redalyc.org/articulo. oa?id=88319381015

Waewthongrak W, Pisuchpen S and Leelasuphakul W. 2015. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology. 99: 44-49. https://doi.org/10.1016/j.postharvbio.2014.07.016

Walsh F, Morrissey P, O´Gara F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Enviromental biotechnology. 12: 289:295. https://doi.org/10.1016/s0958-1669(00)00212-3

Xing K, Zhu X, Peng X and Qin S. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development. 35:1– 20. https://doi.org/10.1007/s13593-014-0252-3

Yanes ML, De La Fuente L, Altier N and Arias A. 2012. Characterization of native fluorescent Pseudomonas isolates associated with alfalfa roots in Uruguayan agroecosystems. Biological Control. 63: 287–295. https://doi.org/10.1016/j. biocontrol.2012.08.006

Zacky FA and Ting ASY. 2013. Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control 66: 204–208. https://doi.org/10.1016/j.biocontrol.2013.06.001

Zargar V, Asghari M and Dashti A. 2015. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2: 204–226. https://doi.org/10.1002/cben.201400025




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1812-2

Refbacks

  • There are currently no refbacks.